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Abstract

Condensation is the phenonemon by which quantum particles near in phase space share
a wavefunction and become a so-called mesoscopic quantum entity. We use experimental
evidence we published to support our argument that condensates form through bosonic
stimulation and can occur at non-ground state energies and at room temperature. We
discuss the notion of phase coherence and collective oscillations, providing the Na+/K+

pump as a candidate mechanism for longitudinal collective modes as described by Fröhlich
(1968b). We introduce the stimulated Bose-Hubbard model to account for number and
phase dependencies in lattice models. We discuss an experimental test of Gligorić et al.
(2016) that predicts the onset of compact localised states through engineered flat band
modes. Compact localised states may well be useful in the manipulation of quantum state
in quantum simulators. We mention a hypothesis that consciousness is related to conden-
sation.

xxi





Introduction

#1

My mind a still lake,
surface reflects sky and land —
breathing, what am I?

The phenomenon of condensation was first introduced into the Western canon by Albert
Einstein in 1925 (Einstein, 1925b). Bose-Einstein condensation has been described as a
situation in which multiple particles share a collective wave function, as formalised by
Gross and Pitaevskii (Pitaevskii and Stringari, 2003). Experimental evidence was achieved
in 1995 by two groups, those of Cornell and Ketterle (M. H. Anderson et al., 1995a; K. B.
Davis et al., 1995). Since then, this mesoscopic quantum phenomenon has been found to
be a versatile workbench for examination of quantum coherent dynamics (Ueda, 2010). A
similar non-linear equation is used in the field of optics, especially the examination of Kerr
non-linearities and solitons, and analogies exist (New, 2011).

Descartes (1641) proved mental existence, but separated it from the physical. Galen
Strawson has argued for the mental reality of conscious experience (Strawson, 2010). A
proposal was put forward by Adam Cairns-Smith that in some way consciousness relies
on quantum phenomena and Bose-Einstein condensates might be a phenomenon that can
explain the gestalt (Cairns-Smith, 1998). Immediate opposition to this hypothesis arose
with the rejoinder that these phenomena only occur at ultracold temperatures, as asserted
by Einstein. This is related to the general argument that quantum effects cannot occur at
biological temperatures because of rapid phase decoherence brought about by environmen-
tal noise (McFadden and Al-Khalili, 2018). Fröhlich (1968b) suggested a mechanism for
condensation in biological systems but his candidate dipole oscillator, hydrogen bonds in
carbon chains, requires energies in the microwave range, the energy of a photon for which
is about 1 meV and does not seem to be able to be naturally generated. I have suggested a
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2 Introduction

different dipole oscillator, the transmembrane Na+/K+ pump, which I use to demonstrate
phase synchronisation (McPhail, 2009).

This thesis arose from a desire to become further acquainted with the experimental
and theoretical aspects of Bose-Einstein condensation as realised with ultracold Rubidium
atoms in the same laboratory in which I had conducted dissertation research on Bragg
diffracted condensates in a harmonic trap. My first goal was to gather more data for our
thermalisation experiments (Brown et al., 2018) and then test a particular hypothesis
about spin-orbit coupling and compact localised states (Gligorić et al., 2016). After the
interference brought about by catastrophic equipment failure and the pandemic, the deci-
sion was made to abandon the experiment and concentrate on testing the hypothesis with
simulations. The theory was that particular quasi-one-dimensional lattices, with the aid of
spin dependent linear momentum, would give rise to a clumped and uneven distribution of
atoms. Wanting to test whether a lateral force could arise from counter-propagating laser
beams, I used a full spinor Gross-Pitaevskii simulation.

In this work, I bring together a brief theoretical development of condensation, prove that
condensates can exist above the laboratory ground state and at room temperature, find
phase coherence in a simulation of my dipole oscillator model, introduce the Stimulated
Bose Hubbard model and a putative mechanism behind phase coherence, describe the
intended experimental procedure and a new apparatus with greater optical access, and
report the results of evaluating our intended test of Gligorić’s hypothesis 1.

1all code can be accessed at https://github.com/amcphail/phd

https://github.com/amcphail/PhD


Bose-Einstein Condensation

New Zealand

Sunrise,sunset beach,
birthing, reviving — that’s it.
Don’t covet your zen.

Bosons and Fermions

In quantum mechanics, particles are held to be identical and indistinguishable. Also, par-
ticles can have either half integer or integer spin. When we swap particles, r1, r2, in a two-
particle system, Ψ(r1, r2), the corresponding probability density, |Ψ|2, should not change.

|Ψ(r1, r2)|2 = |Ψ(r2, r1)|2 (2.1)

This can be achieved in two ways. The symmetric case, for integer spin particles, bosons,

Ψ(r1, r2) = Ψ(r2, r1), (2.2)

and the antisymmetric case, for half-integer spin particles, fermions,

Ψ(r1, r2) = −Ψ(r2, r1). (2.3)

The reason that fermions are antisymmetric and that bosons are symmetric under
particle exchange is shown by the spin statistics theorem. In a Lorentzian treatment of
spin statistics, integer-spin wave-functions transform in space-time as a tensor of odd-
rank, and thus act as bosons, while half-integer-spin wave-functions transform as a tensor
of even-rank, and thus satisfy the exclusion principle (Pauli, 1940). The formal requirement
for a Lorentz transform is that there be an upper-bound on the speed with which a particle

3



4 Bose-Einstein Condensation

can move to an adjacent point in space. If we consider time as the ordering of arrangements
of matter and energy in space, and ignore the observer-centric premise of relativity, then
we can look at the spinful particle propagator as having a finite range and every step the
wave-function transforms, the odd and even rank tensors transform differently. A half-
integer spin particle requires a 2 · 2π rotation to return to its original state, whereas an
integer spin particle requires a single 2π rotation.

If we solve the Schrödinger equation for a wave-function Φ(r1, r2) where the ri represent
position and spin, in quantum mechanics, particles are treated as indistinguishable, we need
to write a linear combination, or superposition, of candidate solutions, Φi

Ψ(r1, r2) =
1√
2

[Φ(r1, r2)± Φ(r2, r1)] , (2.4)

where the + and − are for bosons and fermions, respectively.
The joint probability of finding two particles at r1 and r2 is

|Ψ(r1, r2)|2 =
1

2

{
|Φ(r1, r2)|2 + |Φ(r2, r1)|2 ± 2< [Φ∗(r1, r2)Φ(r2, r1)]

}
. (2.5)

The interference term, the < part, implies that the probability of finding two inden-
tical bosons at the same coordinate, |Ψ(r, r)|2, is twice that of |Φ(r, r)|2, which is the
corresponding probability for distinguishable particles. When the number of bosons, N ,
is large, the joint probability for finding all bosons in the same state is N ! larger than
the distinguishable case. This is as a result of the number of possible permutations in
the interference term. The constructive interference in this term only becomes significant
when the wave-packets of the bosons overlap each other, which occurs when the de Broglie
wavelength, λDB, approaches the interparticle spacing (see below). This is the quantum
degeneracy condition. For fermions, the right hand side goes to zero, which shows that no
two fermions can occupy exactly the same quantum state, the Pauli exclusion principle.
Bosons do not obey this principle, and can aggregate in the same state (Ueda, 2010).

Bose-Enhanced Growth

Here we derive the basic mechanism for bosonic stimulation1.
1This treatment was provided by Professor John Close of the Australian National University at the

Australian and New Zealand Summer School for Ultracold Physics at the University of Otago in 2019.



Condensation 5

Target state empty For one possible state, we take the initial state, |i〉 = |S〉1, to be
empty and the final state, |f〉 = |T 〉1, to contain one boson. Then the Hamiltonian is

Ĥ = α |i〉 〈f |+ h.c. = α |S〉1 〈T |1 + h.c. (2.6)

So the scattering rate is | 〈i| Ĥ |f〉 |2 = α2.

Target state contains one boson For two possible states, we take the initial state,
|i〉 = 1√

2
[|S〉1 |T 〉2 + |T 〉1 |S〉2], a superposition, and the final state, |f〉 = |T 〉1 |T 〉2.

Then the Hamiltonian is

Ĥ = α |i〉 〈f |+ h.c. = α |S〉1 〈T |1 + α |S〉2 〈T |2 + h.c. (2.7)

So the scattering rate is 2α2 and in general the scattering rate is enhanced byN+1. This
follows directly from the number of possible permutations of indistinguishable particles in
the interference term, as mentioned above.

Condensation

Bose (1924) was thinking about the ultraviolet catastrophe, in which the classical theory
of black-body radiation at thermal equilibrium predicted that the energy emitted would
increase as frequency of the electromagnetic radiation increased, implying that a black-
body would lose all its energy, when he found a distribution for the statistics of the spin 1
photon, a boson. He derived the expression for the occupancy expectation, n̄i of an energy
state, i, as

n̄i =
gi

eεi/kbT − 1
, (2.8)

where ni is the number of particles in state i, gi is the degeneracy of energy level i, εi
is the energy of state i, kb is Boltzmann’s constant, and T is absolute temperature.

Bose sent his treatment to Einstein, who translated the work into German. The fol-
lowing year, Einstein contributed two papers to this field. One extended the treatment to
interacting bosons

n̄i =
gi

e(εi−µ)/kbT − 1
, (2.9)

where µ is the chemical potential, the energy required to add one more particle to the
system (Einstein, 1925a). This expression can be derived combinatorially from the grand



6 Bose-Einstein Condensation

canonical ensemble without any approximations. The treatment allows exchange of energy
and particles with a reservoir. Non-interacting photons do not have a chemical potential
and disappear at absolute zero, but others bosons do interact, thus the need for µ. There
is the condition that εi > µ, as negative particle numbers are forbidden.

In the other paper, Einstein (1925b) showed that below a critical temperature an en-
semble of bosons will condense into the macroscopically occupied ground state2. This is
a quantum mechanical phase transition that occurs when the phase space density, nλ3

DB,
reaches a critical value, a density of approximately n−1/3. Here n = N/V is the density,
where N is the particle number, and V is the volume. λDB is the de Broglie wavelength,
defined as

λDB =
h√

2πmkbT
, (2.10)

where h is Planck’s constant, m is the particle mass, kB is Boltzmann’s constant, and
T absolute temperature. The critical temperature, Tc can be calculated as

Tc =
2π

[ζ(3/2)]2/3
~2

m

(
N

V

)2/3

, (2.11)

where ζ is the Riemann zeta function, and ~ is the reduced Planck’s constant. The
condensed fraction can be calculated as

N0

N
= 1−

(
T

Tc

)3/2

. (2.12)

The above quantities can be used to derive various properties of a condensed system
(Ueda, 2010).

Gross-Pitaevski Equation

The effective interaction of two particles at low energies is generally limited to s-wave
scattering, for which the interaction can be treated as a contact interaction

U(ri, rj) = U0δ(ri − rj) =
4π~2as
m

δ(ri − rj), (2.13)

2It is possible that his reasoning that led to the macroscopic occupation of the ground state was
as a result of considering temperature and the degeneracy of energy levels. However, there is also the
phenomenon of bosonic stimulation, as discussed above.



Gross-Pitaevski Equation 7

where as is the s-wave scattering length. Starting with an effective Hamiltonian

H =
N∑
i+1

[
p2
i

2m
+ Vext(ri)

]
+ U0

∑
i<j

δ(ri − rj) (2.14)

and using a Hartree mean-field approximation, a variational technique, and the method
of Lagrange multipliers, we can derive the Gross-Pitaevskii equation (GPE)[

− ~2

2m
∇2 + Vext(r) + U0|ψ(r)|2

]
ψ(r) = µψ(r), (2.15)

where µ is the chemical potential (Pethick and H. Smith, 2008).
We require the normalisation condition

∑
dr|ψ(r)|2 = N, (2.16)

where N is the total particle number.
Pitaevskii and Stringari (2003) divide the wave-function into a condensate fraction,

φ0(r), and the remaining thermal fractions, φi(r), so that our overall wave-function is

ψ(r) = φ0(r) +
∑
i

φi(r)

= φ0(r) + δφ(r).

At low temperatures and densities, they ignore the fluctuation term, δφ(r), and treat
the condensate as a classical field, φ0(r). This treatment assumes that the condensate will
always occur in the zero-kinetic energy ground state, which we have shown to be a bad
assumption3.

When the BEC particle number is sufficiently large and at low temperatures, the kinetic
energy term in the Hamiltonian can be ignored and we have the Thomas-Fermi approxi-
mation, the solution of which is

|ψ(r)|2 =
µ− Vext(r)

U0

. (2.17)

Note that |ψ(r)|2 = n(r), the probability density. The BEC will acquire the shape
of the containing potential, thus, when the trap is harmonic, the density profile of the
condensate will have an inverted parabolic shape and will have an accompanying thermal

3see Chapter 3
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cloud (Pethick and H. Smith, 2008). The temperature of the condensate can be measured
by fitting a bosonic Gaussian to the thermal wings of a time-of-flight density map of the
condensate (Ketterle, Durfee, and D. Stamper-Kurn, 1999).

The Miesner growth curve

Because of bosonic stimulation, a condensate fraction with initial particle number N0,i,
seeded by random fluctuations, will grow exponentially

Ṅ0 = γN0 (2.18)

where γ is the initial growth rate. Since there are only a finite number of particles, the
final condensate will reach the population carrying capacity, N0,eq, which is modelled by
the equation

Ṅ0 = γN0

[
1−

(
N0

N0,eq

)]
. (2.19)

Gardiner, Zoller, et al. (1997) derive a master equation from quantum kinetic theory
and find an exponential term, δ, in the differential equation which reflects the equilibration
of the chemical potential between the condensate and surrounding thermal cloud. This
treatment was used by Miesner (1998) to derive a growth curve that fit their experiment,

Ṅ0 = γN0

[
1−

(
N0

N0,eq

)δ]
, (2.20)

with solution

N(t) = N0,ie
γt

[
1 +

(
N0,i

N0,eq

)δ
(eδγt − 1)

]−1/δ

, (2.21)

Where N0,i is the initial condensate size and δ was fixed to 2/5 in line with the quantum
kinetic theory.

Microscopic Theory

Starting with Equation 2.14, we convert to using field operators for bosons, ψ̂†(r) and ψ̂(r),

Ĥ =

∫
dr

[
−ψ̂†(r) ~

2

2m
∇2ψ̂(r) + Vext(r)ψ̂

†(r)ψ̂(r) +
U0

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
, (2.22)
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where the creation and annilation operators satisfy the canonical commutation relations

[
ψ̂(r), ψ̂†(r′)

]
= δ(r− r′),

[
ψ̂(r), ψ̂(r′)

]
= 0,

[
ψ̂†(r), ψ̂†(r′)

]
= 0. (2.23)

We can substitute the Fourier expansion of the field operator

ψ̂(r) =
1√
V

∑
k

âke
ikr, (2.24)

where V is the volume of the system.
If we consider a uniform Bose gas, where the potential, Vext, is zero, then we arrive at

the Hamiltonian

Ĥ =
∑
k

ε0kâ
†
kâk +

U0

2V

∑
k,k′,k′′

â†k+k′′ â
†
k′−k′′ âk′ âk, (2.25)

where ε0k = p2/2m. The bosonic creation and annihilation operators satisfy the com-
mutation relations

[
âk, â

†
k′

]
= δk,k′ , [âk, âk′ ] = 0,

[
â†k, â

†
k′

]
= 0. (2.26)

If we consider the fluctuations, δφ(r), are small, and retain only terms which have at
least two powers of ψ(r) and ψ∗(r), we reach the Bogoliubov approximation. The fluctu-
ations represent occupation of modes that are not the classical field of the GPE and in
this approximation represent quasi-particles of equal and opposite momenta. This approx-
imation only includes two-body interactions, which is the reason for omitting higher-order
terms.

Ĥ =
N2

0U0

2V
+
∑
k,k 6=0

(ε0k + n0U0)â†kâk +
n0U0

2

∑
k,k 6=0

(â†kâ
†
−k + âkâ−k), (2.27)

where n0 = N0/V , the density of particles in the zero-momentum state. We can recast
the Hamiltonian to reflect its simple structure of a sum of independent terms

ĥ = ε0(â†â+ b̂†b̂) + ε1(â†b̂† + b̂â), (2.28)

where εi are c-numbers and the â bosonic operators act on the state with momentum
k and the b̂ bosonic operators act on the state with momentum −k. This Hamiltonian can
be solved for its eigenvectors and eigenvalues using a Bogoliubov transformation. Simply,
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we introduce operators α̂ and β̂ such that the Hamiltonian only has terms proportional to
α̂†α̂ and β̂†β̂. The new operators satisfy the transformation

α̂ = uâ+ vb̂†, β̂ = ub̂+ vâ†, (2.29)

with bosonic commutation relations

[
α̂, α̂†

]
=
[
β̂, β̂†

]
= 1,

[
α̂, β̂†

]
=
[
β̂, α̂†

]
=
[
α̂, β̂

]
=
[
α̂†, β̂†

]
= 0. (2.30)

We can take u and v to be real because their phases are arbitrary, also we find that

u2 = v2 = 1 (2.31)

from the transformation and the commutation relations. We then find that

u = cosh t, v = sinh t (2.32)

and, with

ε =
√
ε20 − ε21 (2.33)

we arrive at the Hamiltonian

ĥ = ε(α̂†α̂ + β̂†β̂) + ε− ε0, (2.34)

in which two kinds of quasi-particle bosons can be created and destroyed (Pethick and
H. Smith, 2008).

Reintroducing momentum indexes, where â→ âk, b̂→ â−k, α̂→ α̂k, and β̂ → α̂−k, we
arrive at the Hamiltonian

Ĥ =
N2U0

2W
+
∑
k,k 6=0

εkα̂
†
kα̂k −

1

2

∑
k,k 6=0

(ε0k + n0U0 − εk) (2.35)

with

εk =
√

(ε0k)
2 + 2ε0kn0U0. (2.36)

The operators given by

α̂†k = ukâ
†
k + vkâ−k (2.37)
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create and destroy elementary excitations. Thus the system acts as a collection of non-
interacting bosons in which there can be quasi-particle excitations. The velocity of these
quasi-particle excitations is the speed of sound in the condensate. Up until this point
we have treated the condensate as occupying the ground state of the system, with the
introduction of quasi-particles as perturbations to this ground state.

Truncated Wigner

What is not included in any of the previous treatments is the notion of quantum noise.
These can be fluctuations in the vacuum at the outset of an experiment and there may
be noise during the evolution of the system. Using a technique from quantum optics,
we can express noise in a multimode expansion using a Truncated Wigner function. The
Wigner function is an example of a quasi-distribution function in phase space. A quasi-
distribution function is unlike a probability distribution in that it can have negative values
at some points. These negative regions are associated with the notions of superposition
and entanglement, and thus any analysis which assumes the Wigner function is positive,
as is normally assumed, will leave these quantum mechanical properties out. By sampling
the Wigner function for initial conditions and then evolving the system deterministically,
the Truncated Wigner approach mimics experimental noise by including it in the initial
conditions, half a quantum of energy in each mode.

In the Truncated Wigner derivation, we start with a master equation and map onto
a system of stochastic partial differential equations, Fokker-Planck-like equations. A map-
ping is derived from combinations of density matrix and annihilation and creation opera-
tors to expressions which are functions of the c-numbers that the SPDEs evolve. We cut
off many-body interactions and limit ourselves to terms quadratic in interaction, which
prevents infinite squeezing (Steel et al., 1998). The Truncated Wigner treatment starts by
not assuming the coherent state as the ground-state, but instead uses the Hamiltonian

Ĥ = K +
α

2
P 2 +

∑
j

Ej b̂j
†
b̂j, (2.38)

where K is a constant, b̂j is the annihilation for the quasiparticle excitation of energy
Ej, and the mean-field satisfies the GPE. This is a Boguliubov Hamiltonian.

The Truncated Wigner approximation includes a greater number of modes than merely
the condensate ground state, which was the omitted δφ(r) term in the GPE. In most of
the literature, these additional terms are viewed as modes in which there are a particular
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number of quasi-particle excitations, slightly increasing the energy of the mode, and thus
requiring an extension to the GPE, but not significantly altering the premise that BECs
occur in the zero-kinetic energy state.

Thermalisation

With the Truncated Wigner approximation we successfully modelled bosonic stimulation
in a non-ground state Bose condensate without further enhancing the theoretical under-
pinnings of the model (Brown et al., 2018). In this case, the additional modes were not the
modes of quasi-particle excitations, but higher-momentum modes of a condensate.

Extensions have been made to the Truncated Wigner approximation in the form of
the stochastic GPE (Gardiner, Anglin, and Fudge, 2002; Gardiner and M. J. Davis, 2003),
which divide the analysis of the gas into a condensate region and a thermal region. De-
pending upon the assumptions as to how these two regions interact, various numerical
efficiencies can be achieved. These treatments all rely on a phase-space quasi-distribution
representation of a master equation, which for many experimental realisations is adequate,
however, there are some cases for which a field approximation is no longer workable, for
example, while Fock states are representable, a superposition of Fock states is not (Blakie
et al., 2008).



A Bose-Einstein condensate is a Bose
condensate in the laboratory frame

#18: The post-war dream

Golf and coach rugby;
Read, think, and write; cricket too
Where shall we eat, dears?

Abstract

Bose-Einstein condensates of weakly interacting, ultra-cold atoms have become a workhorse
for exploring quantum effects on atomic motion, but does this condensate need to be in
the ground state of the system? Researchers often perform transformations so that their
Hamiltonians are easier to analyse. However, changing Hamiltonians can require an energy
shift. We show that transforming into a rotating or oscillating frame of reference of a Bose
condensate does not then satisfy Einstein’s requirement that a condensate exists in the
zero kinetic energy state. We show that Bose condensation can occur above the ground
state and at room temperature, referring to recent literature.

I assert that in this case a steadily growing number of molecules compared
to the total density will go over into the 1st quantum state (state without
kinetic energy), while the remainder of the molecules will distribute themselves
according to the parameter value λ = 1. . . . . . one part “condenses,” the rest
remains a saturated ideal gas. (Einstein, 2015, p. 418)

13
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Introduction

D. M. Stamper-Kurn et al. (1998) found hydrodynamic excitations and co-oscillations
between a Bose-Einstein condensate and the accompanying thermal cloud. Rotating a Bose
condensate, which looks stationary in a rotating reference frame, can create excited vortices
(Chevy, Madison, and Dalibard, 2000; Haljan et al., 2001). The dynamics of fractional
vortices were explained by Ji et al. (2008).

Matter waves, such as dark (Denschlag, 2000) and bright (Strecker et al., 2002) solitons,
and rogue waves (Wen et al., 2011), described as metastable states, are evidence of non-
ground state configurations, but these are treated as perturbations to an underlying ground
state (Z. X. Liang, Z. D. Zhang, and W. M. Liu, 2005). Fabbri et al. (2009) found excitation
resonances on one-dimensional lattices.

In Brown et al. (2018) we showed that an entire Bose condensate formed in a non-
zero momentum state, as opposed to some components being in a metastable state as
in the experiments with solitons and vortices. We used a Bragg pulse to excite 50% of
a population of Rubidium-87 atoms in the ground state of an approximately harmonic
trap into the |2~k〉 momentum state. The higher momentum state oscillated in the trap at
the trap frequency and collided with the zero momentum state, scattering atoms. These
atoms then coalesced back into a condensate at the average momentum, the centre of
mass, state, |1~k〉, through bosonic stimulation (Miesner, 1998). This centre of mass state
was originally empty. We showed that the temperature of this state was higher than the
ground state, but still remained below the critical temperature, Tc. We also found that the
new condensate was sometimes multiply seeded, which caused gray solitons through the
Kibble-Zurek mechanism. This is evidence that condensates can occur above the ground
state energy level.

In the literature, a Bose-Einstein condensate is described as an ensemble of interacting
bosons that macroscopically occupy the ground state of a system. Here we demonstrate
that the transformation from the |0~k〉 momentum state of a simple harmonic oscillator
into the |1~k〉 momentum state is an energy-requiring transformation that shows that our
Bose condensate was not in the ground state of the system. It is also not an inertial frame of
reference. After that, we contrast an oscillating frame with transformations in a system of
circular rotations. These too require energy, but the frames of reference remain inertial. We
then point out that the laboratory ground state still has non-zero kinetic energy. Finally,
we justify the existence of quasi-particle Bose condensates at room temperature.
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Simple Harmonic Oscillator

Starting from a simple harmonic oscillator reference frame centred at the |0~k〉 state, we
shall show that transforming into the frame oscillating at the |1~k〉 rate requires energy.
Then we show that the frame of reference is not inertial.

Transformation to |1~k〉 momentum state

The |1~k〉 state has some energy, E1 = ~ω, which can be determined by finding the energy
eigenvalues of the Hamiltonian. We want to transform into the frame of reference where
the |1~k〉 state is stationary.

From the simple harmonic oscillator, in action-angle coordinates, we know that

P =
E

ω
=

~nω
ω

(3.1)

Q = ωt+ α (3.2)

and we want to transform into a new frame of reference

P ′ = P − E1

ω
(3.3)

Q′ = Q. (3.4)

The old and new Hamiltonians are

Ĥ = ωP (3.5)

Ĥ ′ = ωP ′ (3.6)

= ωP − ωE1

ω
. (3.7)

The difference between the Hamiltonians is

H ′ −H = −E1, (3.8)

which is non-zero and thus shifts the energy of the Hamiltonian. In the oscillating
reference frame, the system appears to have E1 = ~ω less energy than when we consider
the oscillation. The ground state still has less energy than the |1~k〉 state, even though the
higher energy state appears stationary in a transformed picture.
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Frames of Reference

A Galilean, or inertial, frame of reference is one in which the reference frame is not accel-
erating. A Galilean transform is a transformation between coordinate systems that can be
achieved through a combination of uniform motion, translations, and rotations. These are
all linear operations that can be written as a matrix algebra.

The canonical transformation into the |1~k〉 state is not a linear transformation. In the
oscillating frame of reference there is a non-zero acceleration, thus the frame of reference
is not inertial.

We can rewrite the oscillator Hamiltonian in terms of kinetic and potential energy,

Ĥ =
p2

2m
+ V (q), (3.9)

where V (q) = mω2

2
q2. Since this is a conservative field, we can calculate the force at

position q as F (q) = −mω2q, and from Newtown’s second law we have a = −ω2q. Thus
there is a non-zero acceleration, the value of which depends on the particle’s position.
Clearly, this is not an inertial frame of reference.

Circular Motion

Contrast an oscillating body, which acquires and loses potential energy, with circular mo-
tion. In quantum mechanics, considering only orbital angular momentum, we can generate
a time-dependent rotation about an axis, z, with the rotation operator,

R(z, ω) = exp (iωtLz). (3.10)

Our transformed wave function is

ψ′(t) = exp (iωtLz)ψ(t), (3.11)

and the Schrödinger equation is

i
d

dt
ψ′(t) = (ωLz exp (−iωtLz) + exp (iωtLz)H(t) exp (−iωtLz))ψ′(t). (3.12)

The transformed Hamiltonian is

H ′(t) = ωLz exp (−iωtLz) + exp (iωtLz)H(t) exp (−iωtLz). (3.13)
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If we look at a half period of rotation, from t : 0 → π, the exponentials will equal 1

and −1, and thus, in a conservative field with rotational symmetry, we have the energy
difference between the Hamiltonians,

H ′(t)−H(t) = −2ωLz, (3.14)

which is non-zero and thus shifts the energy of the Hamiltonian. In the rotating reference
frame, the system appears to have 2ωLz less energy than when we consider the rotation.

The shift to the rotating frame of reference is an energy requiring transformation. This
implies that the lowest energy state of a trapping system in a laboratory frame rotating
about the Earth actually has kinetic energy. Also, a condensate rotating in the laboratory
frame will have non-zero kinetic energy. Becker et al. (Becker et al., 2018), using an ex-
periment aboard a rocket, performed condensation and interferometry tests during launch
and generated a condensate in Earth orbit, which involves a non-inertial frame of reference
during launch and non-zero kinetic energy with respect to the Earth’s frame of reference
during their six minutes of microgravity. So while a Bose-Einstein condensate might have
kinetic energy, it is non-the-less in a ground state. The difference between circular mo-
tion and oscillatory motion is that the rotating frame of reference is inertial, whereas the
oscillating frame of reference has non-zero acceleration. Thus we have supported the exper-
imental evidence that Bose condensates can form in non-ground states and in non-inertial
frames of reference.

The Many Body Case

In the treatment of circular motion, we can already extend to the many body case, as
the rotation operator simply acts upon each particle. The oscillator Hamiltonian was con-
structed for the single particle case. In the case of many interacting particles, the treatment
still holds. It is true that a many particle system will have interaction terms in the Hamil-
tonian, such as the probability density term in the Gross-Pitaevskii equation, however we
can use a canonical transform between Hamiltonians, and a legal transform will operate
on the interaction terms suitably. The interactions are dependent on the relative positions
of particles rather than their centre of mass motion, so that in a non-relativistic setting,
will not be affected by a transformation. A many body Hamiltonian, transformed to a new
frame of reference, will still be subject to the same energetic requirements.

Perturbations to an underlying ground state, such as with solitons, vortices, and rogue
waves, arise because in experiments the atoms have non-zero interaction strengths. These
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non-zero couplings imply that there will be some non-zero energy as a result of the non-
vanishing proximity of adjacent particles. This uneven distribution of energy has been
analysed both hydrodynamically and as quasi-particle excitations (Pitaevskii and Stringari,
2003). In a theoretical analysis of condensates with attractive interactions, it was found
that a build-up of energy at the core of the condensate was dissipated as a rogue wave.
An example of a collective oscillation that arises from the phase coherence brought about
by interparticle interaction. The presence of these couplings greatly affects the condensate
regime (Zinner and Thøgersen, 2009). If there is a phase matching requirement for tran-
sitions between adjacent points in phase space, a collective oscillation might enhance the
occupancy rate of a mesoscopic state.

Another level of complication comes about when different species of particle are in-
troduced, such as with spinor condensates, metastable states of which can theoretically
give rise to solitons (Li et al., 2005). While these features are evidence of non-zero kinetic
energy, they can be treated as perturbations to the potential ground state. The experiment
we have described is an observation of the formation of an entire condensate in a higher
momentum state.

Quasi-particle Condensates

We have shown that Bose condensates can form in a state with kinetic energy. Miesner
et al. (Miesner, 1998) found a rate equation encapsulating bosonic stimulation derivable
from spin statistics (Pauli, 1940). Fröhlich Fröhlich (1968a) conjectured that Bose conden-
sation could occur in biological systems, but he may not have identified the correct dipole
molecules (Fröhlich, 1968b). This form of condensation might be relevant to quantum biol-
ogy (McFadden and Al-Khalili, 2018). Fröhlich’s treatment used an effective ground state
to find a small frequency range of longitudinal energy storage. His rate equations were
subsequently shown to be equivalent to a second quantised form (T. M. Wu and Austin,
1981) that is like three-wave mixing in non-linear optics.

Recalling that mass and temperature are two proportional factors in the de Broglie
wave equation,

λDB =
h√

2πmkBT
, (3.15)

so that for Rubidium-87 of mass about 10−27 kg with a critical temperature of, say,
10−7 K, the ratio is about 10−34. Thus, for the de Broglie wavelength to be the same at room



Conclusion 19

temperature (300 K), we require a mass less than about 10−37 kg. Also, a further decrease
in mass of the quasi-particle by 106 will increase the de Broglie wavelength by 103. Small
effective mass quasi-particles, like magnons (Giamarchi, Rüegg, and Tchernyshyov, 2008),
photon-dye interactions in a cavity (Klaers et al., 2010), and non-linear photon interactions
in a erbium-ytterbium co-doped fibre cavity (Weill et al., 2019), Bose condense at room
temperature. This helps explain high temperature superconductivity (Ramírez and Wang,
2009), a maximum temperature for which might be calculated from the effective mass
of Cooper pairs and the lattice spacing. While lasers are coherent, photons in a vacuum
cannot interact and condense. This requires the intermediary non-linear matter interaction
that overcomes dispersive forces, such as that in a laser cavity.

Conclusion

We have shown that the transformation into the oscillating |1~k〉 reference frame requires
energy and thus there is the formation of a Bose condensate that is not in the ground state
of the trapping system. We have also shown that transforming into a rotating frame of
reference requires energy and so an apparatus ground state can still have overall kinetic
energy. Thus we have justified that Bose condensates can be created in non-ground states
and non-inertial reference frames. Bose condensates attract particles into a macroscopically
occupied state, not necessarily the ground state, through bosonic stimulation. From the
perspective of quasi-particles, we have shown that Bose condensation can occur at room
temperature.





Phase Coherence and Collective
Oscillations

A no surprise surprise

Ch’an is not buddhism,
And if not zen is zen then —
Basement impresses.

Introduction

Fröhlich conjectured that oscillatory bodies in biological systems could excite long range
energy storage through longitudinal electric modes that would then condense in a manner
analagous to Bose condensation (Fröhlich, 1968b; Fröhlich, 1968a). His three requirements
were that (i) there are oscillating dipole units, (ii) they are in a heat bath, and (iii) there
is an external energy source coupled to the oscillating units. While he conjectured that
perhaps hydrogen bonds in carbon chains could oscillate, the energy and frequency of
these would be in the microwave range and not observable naturally in biological systems.

First we introduce a candidate dipole oscillator, the Na+/K+ pump, that meets Fröh-
lich’s three criteria. We then examine a network of these oscillators and discuss collective
oscillations and phase coherence. A network of identical oscillators can lead to the forma-
tion of various patterns (Alexander, 1986). The Kuramato model has been able to capture
the phenomenon of collective oscillations, the key feature being a phase shift based on the
phase difference between two oscillators (Kuramoto and Nakao, 2019).

We then discuss a similar model, that of bosons on a tilted optical lattice. Expressed
in action-angle coordinates this model’s Hamiltonian looks similar to the Bose-Hubbard,
but with two additional factors, one that is proportional to the number difference, and one

21
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that is proportional to the phase difference. We discuss the impact of these factors and how
they relate to Bose condensation, arguing that Boguliobov quasi-particles can be thought
of as buffering the random phase of a viscous, thermal region, from the phase coherent
region of superfluidity.

Phase has been imprinted on a condensate cloud to induce vortices (Matthews et al.,
1999) and the phase gradient determines the velocity field of a condensate. An excitatory
applied force has been shown to induce collective excitations that persist longer in the
phase coherent state (Jin et al., 1996), thus phase coherence has an impact on the time
evolution of a system. Then we relate this phase coherence to the collective oscillations seen
in a network of our dipole oscillators and discuss the notions of energy and information
transfer.

The Na+/K+ Pump

For a nerve cell to pass an electrochemical message, there has to be maintained across the
cellular membrane a voltage potential difference, so that sufficient depolarisation, often at
the post-synaptic membrane, causes a wave of depolarisations as the signal travels across
the neuron.

Excitable membranes, such as those of nerve cells, which transmit action potentials to
register, process, and react to stimuli, must maintain a potential difference across the phos-
pholipid bilayer in order for membrane depolarisation to be triggered. This electrochemical
difference is maintained by the Na+/K+ transmembrane ATPase (ATP-catalysing enzyme)
pump that deposphorylates one ATP molecule to power the transfer of three extracellular
K+ ions for two intracellular Na+ ions. The membrane spanning protein has an accom-
panying valence shell electron cloud. We propose that this electron cloud be treated as a
dipole oscillator, as the transfer of energy from the posphorylation will quantum mechani-
cally perturb, albeit slightly, the electron shell from a resting position. The restoring force
provided by the positively charged ions of the protein acts as the mechanism of oscillation.
Thus this pump meets the three requirements of Fröhlich, (i) the oscillatory unit is the
Na+/K+ pump, (ii) the heat bath is the direct environment of the cellular membrane, at
300 K, and (iii) the external energy source is provided by the ATP phosphorylation.

If the positively charged ion core is modelled as a hollow cylinder with an infinitely
thin negatively charged election sheath and there is a Coulomb interaction between each
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unit of the core and sheath, each of height a centred about the origin, and if we only allow
displacement in the long axis, z, then the restoring force, FR is

FR(z) = − arcsinh
z + a

a
− arcsinh

z − a
a

+ 2 arcsinh
z

a
. (4.1)

The ATP phosphorylation is modelled as a dead-time Poisson process that can only fire
when the electron shell is on the interior of the membrane. This is implemented as a steadily
decaying memory variable that allows a firing event once below a threshold, with a given
probability. Should the firing event occur, the memory variable is reset, and a pumping
force, FP (z) is applied to the electron sheath. The energy input of the phosphorylation is
matched by interaction with the energy bath, which is thermally noisy. This provides a
damping force, FD(ż), which can simply be written as a constant factor, b, of the velocity.
Thus we can write an ordinary differential equation for the oscillator as

d2

dt2
z + b

d

dt
z + FR(z) = FP (z) (4.2)

Figure 1: Two electron sheaths a distance a apart with an angle θij between centre of
masses, and distances zi,j from the membrane.

The restoring force is linear for the region of interest, so our model is simply a damped,
forced harmonic oscillator. When the forcing frequency approaches the natural frequency
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of the oscillator, resonance will occur. We then consider a lattice of oscillators, where the
interaction is a negative Coulomb force between adjacent electron sheaths. The interaction
force is

FI(zi) = −k
∑
j

Kij
zi − zj

a2 + (zi − zj)2
, (4.3)

where k is the force constant, Kij is the adjacency matrix element between nodes i and
j, and a is the distance between adjacent nodes. The adjacency matrix is a matrix of size
N ×N where N is the number of nodes in the lattice. When an entry in the ith row and
jth column is non-zero, that is the strength of the interaction from the jth node on the
ith node. Figure 1 shows the vertical force exerted by an oscillator upon its neighbour.

The interaction force equation can be recast as

FI(rij, θij) = −k
∑
j

Kij
1

r2
ij

rij sin θij, (4.4)

where θij is the angle between two electron sheaths and rij is the distance between
them. This is consistent with an inverse square law.

Simulating this system where the adjacency matrix is a one dimensional chain and using
relatively arbitrary parameters shows the development of collective oscillations. In Figure 2
we show the results of the simulation. Subplots (a) and (b) show the pairwise mutual
information of oscillator nodes. Initially there is little coordination between the positions
of the oscillators, but by the end of the simulation we can see that there is correlation
between all nodes, even though the interactions are limited to nearest neighbour. Subplot
(c) shows the positions of the oscillators for the last time period of the simulation, it can be
seen that collective oscillations have been established. Subplot (d) shows the final positions
of the oscillators. Neigbouring nodes are in anti-phase, which is a result of the negative
interaction force between adjacent nodes.

The turn-over rate of the Na+/K+ pump is about 25 to 100 Hz in cultured cells (Hoot-
man and Ernst, 1988; M. Liang et al., 2007), and thus, if this is near the resonance fre-
quency of the membrane lattice oscillators, could account for the gamma oscillations viewed
in EEG signals, and explain extracellular currents (Buzsáki, Anastassiou, and Koch, 2012).
The collective oscillations would have a lower frequency, and thus could explain such EEG
evidence. It is impossible for an amplitude envelope to oscillate faster than the actual os-
cillator node, therefore any collective oscillation, manifest as synchrony or that envelope,
will have a frequency lower than the frequency of the individual oscillator. That there are
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Figure 2: (a) mutual information of oscillators after initial burn-in, (b) mutual information
at end of simulation, (c) time-series of oscillators for end of simulation, (d) position of
oscillators at end of simulation.

collective oscillations at a low frequency is consistent with Bloch’s theorem in solid state
physics, in which a lattice of static potentials can be expressed as the product of a plane
wave and a matching periodic potential. In a lattice of N nodes, there are N !/(N−M)!M !

M node subgroups. This gives us the total number of collective modes, but given the num-
ber of small subgroups commensurate with the phase of large subgroups, the amplitude of
the larger, lower frequency, lower energy subgroups will be larger.

From Figure 3, we can see that the oscillations of the node are bounded by a slower
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Figure 3: Position of an oscillator node.

frequency envelope. Recalling figure 2(c), this envelope is synchronised across the lattice.
Figure 4 shows a plot of the position versus velocity of an oscillator. It can be seen that
the amplitude varies and occasionally receives a small perturbation, which is the result of
the stochastic kick. Small perturbations, such as that of the random kick, have been shown
not to qualitatively affect overall dynamics (Gopalsamy and Rai, 1988). We can assign a
phase as the angle swept out by the oscillator.

Phase reduction techniques have been used to analyse networks of oscillators (Nakao,
2016). The canonical model of phase synchronisation is the Kuramoto model. Each oscilla-
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Figure 4: Phase portrait of an oscillator node.

tor is reduced to a single variable, its phase, ϕ. The ansatz is to hypothesize that a phase
difference between connected nodes would retard or advance respective phases.

ϕ̇i = ωi − J
∑
j

Kij cos (ϕi − ϕj), (4.5)

where i and j range over lattice node indices, ωi is the natural frequency of the oscillator,
J is the interaction strength, and Kij is the adjacency matrix. The adjacency matrix has
a non-zero entry in the i row and jth column when there is a coupling between node i
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and node j. Next in the analysis is to calculate an order parameter, the mean phase, and
express the model in terms of this overall parameter,

ϕ̇i = ωi − J cos (ϕ̄− ϕi). (4.6)

This order parameter is reminiscent of the classical field variable representing a conden-
sate in the GPE equation, and each oscillator state is expressed as a perturbation from this
mean value. In a fully connected model, a phase transition was found between incoherent
oscillations and phase synchrony, based on the tuning of the interaction strength. Various
network topologies have uncovered a range of behaviours, ranging from full synchronisation,
to patchworks of synchrony, to random phases. Unfortunately, our simulation parameters
did not yield a constant amplitude envelope and thus it is not directly amenable to phase
reduction techniques that lead to the Kuramoto model.

Stimulated Bose Hubbard Model

The Bose-Hubbard Hamiltonian models spinless bosons on a lattice,

H =
∑
i

εin̂i +
U

2

∑
i

n̂i(n̂i − 1)− J
∑
〈i,j〉

b†ibj. (4.7)

The sum with 〈i, j〉 denotes enumeration over nearest neighbour sites, b†i (bi) are the
annihilation (creation) operators for bosons and satisfy the usual commutation relations
[bi, b

†
j] = δij, n̂i is the number operator, εi describes the energy offset of each lattice site,

and U is the onsite interaction energy (U > 0 is repulsive). These various components
are illustrated in Fig. 5. Neglected are the next-nearest neighbour interactions and the
nearest-neighbour repulsions, which are typically two orders of magnitude smaller than
the included interactions (Jaksch et al., 1998).

Bose-Einstein condensation has been examined on a tilted optical lattice, where each
lattice site provides a harmonic potential and the tilting introduces a force between each
lattice site. This system is similar to our oscillator model above. Starting from the one di-
mensional Gross-Pitaevskii equation, and converting to action-angle coordinates (Witthaut
and Timme, 2014), the Hamiltonian is

Ĥ = εi
∑
i

Ii +
U

2

∑
i

I2
i − J

∑
ij

Kij

√
Ij
√
Ii(Ij − Ii) sin (ϕj − ϕi). (4.8)
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Figure 5: Bose-Hubbard model parameters. See text for an explanation of the symbols.
From Jaksch et al. (1998)

Where Ii is the action of the ith node. This Hamiltonian, for some parameter space,
shows chaotic behaviour as a result of dephasing between lattice sites. Coherence requires
the matching of the lattice depth, the lattice spacing, and the interaction force. This match-
ing is required so that a region of parameter space that is commensurate with coherence is
reached. The lattice depth will determine the natural frequency, and if interaction strength
and lattice spacing do not induce the correct phase shifts, then dephasing will occur.

The action is the square root of the energy, if we compare this Hamiltonian to the
second-quantised Bose Hubbard model, we see a direct similarity, with the addition of a
number dependent term and a phase dependent term. We make the analogy and write
down the Hamiltonian:

Ĥ = −ε
∑
i

n̂i +
U

2

∑
i

n̂i
(
n̂i − 1̂

)
− J

∑
i,j

Kij b̂
†
i b̂j
(
n̂i − n̂j + 1̂

)
ŝi(ϕ̂i − ϕ̂j + φ) cos (ϕ̂i − ϕ̂j + φ) (4.9)
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Where b̂†i , (b̂i) is the bosonic creation (annihilation) operator on node i, n̂i is the number
operator, b̂†i b̂i, ϕ̂i is the phase operator, ŝi(θ) is the phase shift operator, ε is the chemical
potential, φ is the phase interaction offset, (|φ|2 < π

2
is attractive), and all else is as above.

The Bose Hubbard model has been used to model the phase transition betweeen Mott
insulator and superfluid states (Fisher et al., 1989a; Greiner et al., 2002). In the insulating
state, bosons are localised to individual lattice sites and there is no phase coherence between
adjacent bosons. In the superfluid state there is phase coherence and the wave functions
of the individual bosons are spread across lattice sites. This model bears the name Bose
because it allows multiple occupation of the same quantum state, which distinguishes it
from a fermionic system. What is not included in the model is bosonic stimulation (Miesner,
1998). The introduction of a number dependent term will lead to the multiple occupation
of lattice sites in the broadened transition between the insulating and superfluid states.
Figure 6 shows the expected occupancy number in a simulation of the stimulated Bose
Hubbard model for various parameters (Krämer et al., 2018). This transition can explain
the region of number dependence found in a photonic model of the insulator-superfluid
transition (Greentree et al., 2006).

Quantum Phase

The issue of a variable such as phase has been vexing in the study of quantum mechanics
because of its multivalued nature. The solution is to rely on the cosine and sine operators to
act as conjugate to the number operator, in this way we have smooth, well behaved variables
(Susskind and Glogower, 1964; Pegg and Barnett, 1989; Kastrup, 2006). In action-angle
coordinates, the angle variable is actually a linearly increasing function of time, the problem
arises when switching to a circular phase, whichs jumps by 2π every round trip. Also, just as
in practice the number operator is given an arbitrary roof, the infinite dimensional Hilbert
space is truncated for the phase variable. If, as mentioned in Chapter 1, time is a label on
arrangements, then the only sensible treatment of time is as intervals, or differences, and
the problem of an infinite dimensional Hilbert space for time, angle, or energy (action) is
obviated.

A number state has a random phase, for phase coherence to occur, as in superfluidity,
there must be a mechanism by which neighbouring particles’ phase synchronise. Most theo-
retical treatments limit the interaction between particles to a hard shell contact interaction
based on the two body s-wave scattering length. This is introduced in the Gross-Pitaevski
equation as an interaction parameter multiplied by the density operator. In no way is phase
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Figure 6: Lattice occupation number over time.

taken into account. A condensate occurs when the interparticle spacing approaches the de
Broglie wavelength, thus we choose to model the phase interaction as a soft interaction.
The phase shift introduced by a direct linear s-wave elastic collision is ka0, where k is the
wavenumber and a0 is the s-wave scattering length (Walraven, 2019). As we are starting
with phase incoherent particles, their phases will not be synchronised, which is implic-
itly assumed in most theoretical treatments, where, for example, the time-evolution of the
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annihilation operator being eiωt+φ, it is ignored. Thus we model the phase interaction as

dϕ

dt
=
∑
i

ωi − J
∑
i,j

Kij exp (cos (ϕi − ϕj + kia0 + φ) · π). (4.10)

Where the variables are defined as above and we can expand the cosine term in ap-
propriate sum and difference identities. If we require phase-matching for a particle to join
a condensate, which is supported by the observation of a healing length, then we can see
that an ensemble of particles with commensurate phases will occupy a smaller region of
configuration (phase, in a different sense) space. This proximity further enhances Bose stim-
ulated growth. An exponent of 2/5 was found to be required in a the Miesner growth curve
(Miesner, 1998), which can be explained when taking an expectation value of interacting
phases.

Phase Dependent Gross-Pitaevskii Equation

We have modelled the interaction of two populations of particles with our above phase
shift operator acting on the density operator. Implementation of this operator in position-
momentum space requires the comparison of neighbouring points in the truncated Hilbert
space and thus loses the flavour of the mean-field contact interaction GP equation, however,
it is required to explain the phenomenon of phase coherence. Figure 7 shows two populations
in a ground state. Without interactions the two populations follow a steady phase evolution.
When density interactions are turned on, there is a complicated phase relationship and
when phase interactions are turned on, this relationship remains. While we have been
unable to provide evidence, I hypothesize that when the phase interaction strength matches
the simulation grid spacing appropriately, phase coherence between the two populations
can be achieved.

A condensate cannot have a specific number of particles to remain coherent and conden-
sates always are surrounded by a thermal cloud. A thermal cloud is a collection of particles
with random phase and in order for a particle to join the condensate it must match the
condensate’s phase. In the Boguliobov model, quasi-particles can travel through the con-
densate at the speed of sound, a function of phase coherence, and in a superfluid form in
the region between viscous flow and the superfluid. These buffering particles must carry
phase, which is reasonable, as the quasi-particle excitations are equivalent to phonons but
are carried by the electromagnetic field and thus have phase. A condensate is a coherent
matter wave, and the evidence of a healing length means that there is an effective force
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Figure 7: Phase of two populations of particles in a harmonic potential. The figures on
the left are the mean phase and the figures on the right are the standard deviations of the
phase. The first row is the standard spinor GPE with no interaction. The middle row shows
the phase when the standard non-linear interaction is turned on. The third row shows the
phase when phase differences are used.

restoring the phases of the constituent particles to be aligned with the phases of neighbour-
ing particles. This is reminiscent of the Ising spin model and the ferromagnetic transition,
the effective field created by aligned phases repairs disturbances to phase coherence.

As we have mentioned, for a contact interaction, and remaining limited to the s-wave
regime, the phase shift induced by a head-on collision is fixed. In many treatments, the
hard shell approximation is softened. If we allow the wavefunction to spread and also allow
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glancing collisions, then not all collisions between two particles will induce the full phase
shift. Indeed if two particles are travelling in almost parallel, such as in a superfluid, then
a weak approach will induce a small phase shift. Given the correct conditions, these small
phase shifts can act as correcting forces that maintain the superfluidity and protect against
turbulence.

Conclusion

A phase coherent wave can transmit energy and thus information much more rapidly than
a disordered medium. Relating the phase coherence of a condensate to the phase coherence
of the oscillator model, we can see that once phase coherence is established, energy can
be transmitted by that collective mode. Collective modes are one way of expressing the
dynamics of system that is useful if we can find mechanisms that can transfer a collective
quantum of energy. For the condensation of collective excitations in a biological setting
to be of any relevance, there needs to be a mechanism by which those quanta can be
transferred to do useful work, otherwise the energy storage may be of little significance.
Synchronisation can lead to useful work, especially if there is an energy barrier that cannot
be overcome by a single unit.
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Communication and
Cooperation

Cooperation,
without, sounds — prerequisite for
communication.

Bose-Einstein Condensates

BECs were first reported experimentally in 1995 by M. H. Anderson et al. (1995b) working
with 87Rb and K. B. Davis et al. (1995) working with 23Na, for which the Nobel prize in
Physics was awarded in 2001. Since the first creation of BECs in the laboratory, the field
has undergone an explosion in theoretical and experimental reports (Inguscio, Stringari,
and Wieman, 1998; Dalfovo et al., 1998; Leggett, 2001; Pitaevskii and Stringari, 2003;
Pethick and H. Smith, 2008). BECs are ideal tools for exploring analogies to other physical
systems, including condensed matter and particle physics systems, because of the easily
tunable system parameters and cleanness of the experimental configuration. In the realm
of condensed matter physics, topological properties of lattice structures can provide insight
into the superfluid-Mott insulator transition (Greiner et al., 2002), topological insulators
(Hasan and Kane, 2010), and other quantum Hall effects (Sørensen, Demler, and Lukin,
2005; Goldman, Kubasiak, et al., 2009), among others. BEC systems can be used to realise
Feynman’s dream of targeted quantum simulators (Feynman, 1982; Buluta and Nori, 2009;
Bloch, Dalibard, and Nascimbène, 2012).

From elementary atomic physics, we know that the positive nucleus, which carries most
of the mass of an atom, is orbited by negative electrons. Solutions to the Schrödinger
equation yield differently shaped electron orbitals with various energy levels. Alkali atoms,

35
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those in the first column of the periodic table, have one valence electron and are thus simpler
to study and manipulate than atoms with multiple interacting valence electrons. The outer
electron can occupy various energy levels and the transitions between these energy levels
have specific values, or frequencies. The quantum numbers, n, `, and m, determine the fine
structure of an atom. This is the level-splitting achieved without considering relativistic
or spin effects. Hyperfine spliting is determined by the interaction of the nuclear moments
with the electrons and there can also be splitting of spin states by an (effective) magnetic
field. Rb atoms have transitions in the near-infrared range and are thus easily accessible
to inexpensive laser light. When an atom is illuminated by electromagnetic radiation of a
frequency that matches the energy of the atomic transition, or is on resonance, the valence
electron will absorb a photon and increase in energy. After the typical life-time of the
transition the electron emits a photon and drops back down in energy levels. While there
are many energy levels, some of them degenerate, there are selection rules which govern
which transitions occur. Transitions must conserve angular momentum.

Atoms are cooled using a magneto-optical trap (MOT), in which a pair of magnetic
coils in the anti-Helmotz configuration generate a linearly varying magnetic field with a
zero at the centre of the trap. Counter-propagating laser beams that are red-detuned from
resonance are used to cool the atoms. The magnetic field induces Zeeman splitting, meaning
that the further from the centre of the trap an atom is, the greater the energy shift. When
a polarised atom moves away from the mid-point it approaches resonance with the laser, it
then absorbs a photon and receives a momentum kick back towards the centre. The atom
then spontaneosly emits a photon in a random direction. After many iterations, cool atoms
collect in the centre of the trap where the Zeeman shift is zero and the atoms are dark.
Temperatures in the microkelvin range can be reached in this manner.

Initial attempts to cool atoms achieved temperatures lower than expected and some
theoretical work had to be undertaken to uncover polarisation gradient cooling (Cohen-
Tannoudji, 1998). The counterpropagating beams of the MOT, when correctly polarised,
will create alternating regions of polarised light. As the light polarisation alternates, light
shifts are induced in the energy of the atom. Once it reaches a peak of the Zeeman shift,
a photon is emitted and the atom looses energy.

The final stage in the creation of a Bose-Einstein condensate is classical evaporative
cooling, in which the power of a laser trap, different from the MOT lasers and normally
a harmonic potential, is slowly ramped down. The most energetic atoms will no longer be
held by the trap and the remaining atoms are given an opportunity to rethermalise. This
process is repeated until only ultracold atoms remain. When the critical temperature is
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reached, atoms coalesce into a condensate. As we showed in Chapter 3, Bose condensates
need not be in the ground state of the trap and form through Bose stimulation.

Optical Lattices

Optical lattices, normally created by the interference of multiple laser beams, are periodic
microscopic potentials for atoms induced by the AC Stark effect and were studied in the
context of laser cooling of atoms, before the first realisation of BEC (Fig. 8) (Verkerk et al.,
1992; Jessen et al., 1992; T. W. Hemmerich, 1993). The wave function of the atoms can

Figure 8: A 2D optical lattice with an uneven distribution of atoms. This is the BEC
superfluid phase. From Lewenstein et al. (2007)

be described by a periodic Bloch function, Ψ(r) = eik·ru(r) with u(r) = u(r + a) and
k the wave vector of the Brillouin zone, where a is the lattice constant. This wavefunc-
tion extends over the entirety of the lattice. A transformation to orthonormal localised
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eigenstates, or Wannier functions, can be made. The AC Stark effect is the shifting and
splitting of spectral lines by an electric field as a result of the electric field interacting with
the induced polarisation of the atoms. These optical lattices are without defects and are
dissipationless so are an ideal model for analysing condensed matter systems, which nor-
mally do have these deviations. The interfering laser beams are far-detuned from resonance,
which reduces spontaneous emission, and create attractive (red-detuned) or repulsive (blue-
detuned) potentials. Atoms loaded into these periodic potentials have vibrational motion
and can tunnel between the potential wells. The energy of the atoms in the lattice can be
described as a band structure, like electrons in a metal lattice (Raithel et al., 1997). The
lowest energy band can be populated by loading from a BEC. Tunneling between adjacent
sites in a vertical lattice was realised by B. P. Anderson and Kasevich (1998).

The hopping parameter, J , can be tuned by adjusting the intensity of the lattice poten-
tial laser beam. There is a transition from the normal superfluid state, with high tunneling
probability, to a Mott insulator, or crystal, state in which a band gap is introduced be-
tween the ground state and higher excited states. This transition occurs when the intensity
of the laser field is increased so as to essentially eliminate hopping between sites (Fisher
et al., 1989b). The Mott insulator state can not be treated via the Gross-Pitaevskii equa-
tion as there is not a single macroscopic wavefunction such as in a BEC (Greiner et al.,
2002). BECs in optical lattices lead to interesting nonlinear effects and can be used not
only to model condensed matter systems but also as quantum simulators (Morsch and
Oberthaler, 2006; Lewenstein et al., 2007). Superlattices are superpositions of basic lat-
tices with multiple, different frequencies and thus lattice constants, and can be used to
generate complicated structures, including disordered lattices, which are achieved using
incommensurate frequencies. Various lattice configurations have been proposed and im-
plemented, including Kagome (Ruostekoski, 2009; G.-B. Jo et al., 2011), one dimensional
sawtooth and zigzag (T. Zhang and G. B. Jo, 2015), and Lieb (Taie et al., 2015; Slot et al.,
2017) lattices. Sawtooth lattices have been shown to have nearly flat first excited state
bands (See below).

SOC can be applied to BECs in optical lattices, giving rise to many interesting effects.
SOC couplings cause degeneracies in the energy dispersions. Around these degeneracies the
dispersions are linear (Larson et al., 2010). A number of theoretical papers have treated
the question of SOC on lattices, some of which have predicted the onset of topological
insulators (Beugeling, Goldman, and C. M. Smith, 2012; Struck et al., 2012; Kartashov et
al., 2016; Pan et al., 2016; Grusdt et al., 2017). Experimental realisation of one-dimensional
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lattices with SOC was reported in 2014 (Atala et al., 2014) and of two-dimensional lattices
with SOC in 2016 (Z. Wu et al., 2016).

Spin-Orbit Coupling

Atoms used in BEC studies are neutral atoms and are thus not subject to electromagnetic
forces in the same way as charged particles. This can initially be seen to be an impediment
to the modelling of structures such as metals and ferromagnets. However, artificial gauge
fields can be used to simulate electronic and spintronic effects (Lin, Compton, et al., 2011;
Goldman, Juzeliunas, et al., 2014). A gauge field is a field included in a system’s equations
of motion to ensure that the equations of motion are invariant under local transformations
allowed by degrees of freedom in that equation of motion. The symmetries involved mean
that transformations of the gauge fields do not affect the underlying physics and thus
conserve quantities. SOC, in which the spin of a particle is coupled to its centre of mass
momentum, is an example of a gauge field used to induce behaviours similar to those of
charged particles. A number of proposals have been put forward to induce SOC in ultra-
cold atoms. Initially these involved all the magnetic sublevels of a hyperfine state (Osterloh
et al., 2005; Ruseckas et al., 2005; Stanescu, C. Zhang, and Galitski, 2007; Spielman, 2009).
Following this, pseudo-spin-1/2 boson systems, in which all but two magnetic sublevels are
eliminated, were then suggested (Stanescu, B. Anderson, and Galitski, 2008; X. J. Liu
et al., 2009). The pioneering work of Lin, Jiménez-García, and Spielman (2011) opened
the door to experimental realisation of SOC, which implemented one-dimensional SOC
of pseudo-spin-1/2 bosons. SOC is typically a combination of the Rashba (R) (Bychkov
and Rashba, 1984) and Dresselhaus (D) (Dresselhaus, 1955) forms, where the Hamiltonian
component is

HR,D = αR,D(σ̂xky ∓ σ̂ykx), (5.1)

with α the coupling strength, σi the Pauli matrices, and ki the wave vectors.
SOC in ultracold Bose gases is achieved through the use of two-photon Raman paired

laser pulses (Fig. 9(a)). In this situation a photon of one wavelength from one beam with a
particular polarisation is absorbed by the atom and then is ejected by stimulated emission
of another photon at a different wavelength by the other beam, again with a specific
polarisation. This gives the atom a momentum transfer proportional to the wavevector of
the interfering laser beams. The polarisation is chosen to match the quantum transition
rules for the particular transition desired.
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Figure 9: (a) Raman (kick) laser scheme. B0 is the applied magnetic field, ωl is the kick
laser frequency and ∆ωl is the small detuning to give a momentum transfer. (b) Three-
legged level diagram of the 87Rb D2 transition with magnetic sublevels split by an applied
magnetic field. ∆ is the detuning from resonance, ωz is the difference in frequency between
the two Raman beams, δ is a small detuning. A lambda scheme is obtained when the
magnetic field is large enough to induce the anomalous Zeeman effect in which case the
mF = 1 state is further separated and adiabatically eliminated. From Brown (2014).

In the 52S1/2 hyperfine state of an atom there are three ground state magnetic sublevels,
|F = 1,mF = −1〉, |F = 1,mF = 0〉, and |F = 1,mF = 1〉. Fig. 9(b) shows the three mag-
netic sublevels transitioning to the higher excited state, F = 2. Energy is on the vertical
axis. It can be seen that the three magnetic sublevels have different energies, which are a
result of the applied magnetic field. In the original proposal, a three-legged scheme linking
the F = 2 excited state to the three lower sublevels was envisaged. These sublevels are de-
generate but the degeneracy can be removed by introducing a magnetic field, which splits
the sublevels into different energy states through the linear Zeeman effect. This requires a
pair of Raman beams for each transition between magnetic sublevels.

With a sufficiently strong magnetic field, the anomalous Zeeman effect comes into play
and can be used to adiabatically eliminate one of the sublevels. This leaves a Lambda
scheme in which two of the magnetic sublevels can transition to the higher hyperfine state.
These two remaining sublevels are an example of a pseudo-spin-1/2 system in which one
of the states can be labelled spin up, |↑〉, and the other spin down, |↓〉. Now only one pair
of Raman beams is required. One of these beams must be circularly polarised to change
the mF quantum number and the other can be linearly polarised. The Raman beams are
set to the wavelength of the 52S1/2 → 52P3/2 transition with a detuning, ∆, to reduce
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spontaneous emission, which is the emission of a photon when an electron just raised to
an excited state transitions back down to the ground state. The detuning means that the
electron has a reduced chance of being raised to the excited state. This means that the
excited state becomes a virtual state and there remains a Rabi frequency, Ω, between the
two magnetic substates, which is the two-photon Raman coupling, proportional to the
difference in wavelength between the two laser beams.

Because there is a momentum change, the atoms are not at rest in the laboratory frame
and so there is a small detuning, δ, from the magnetic field induced energy levels of the
two mF substates.

Flat Bands and Compact Localised States

A dispersion curve is a relationship between the wavevector of a particle and its energy
on a lattice structure. The energy normally varies with wavevector. Flat band modes are
dispersionless bands for which the energy is constant as the wavevector varies. Flat bands
can give rise to a CLS in which the particles in question are not uniformly distributed
across the lattice but instead occupy a small subset of lattice sites. Examples of CLSs
are solitons, wavepackets that maintain their shape, and discrete breathers, periodically
oscillating wavepackets that do not disperse. These have been predicted theoretically to be
achievable with particular two dimensional lattice structures and spin-orbit coupling. CLSs
could find application in the field of quantum computation as they can provide a basis for
qubits. These qubits could be manipulated by dynamic modification of the surrounding
lattice and laser pumps.

A perfect lattice with infinite extent, according to Bloch’s theorem, will give rise to
energy eigenstates that extend to infinity periodically across the lattice. On a lattice, the
momentum space reciprocal lattice of the unit cell is called the Brillioun zone (BZ). A
dispersion curve relates the particle energy to its wave-vector across the BZ. Dispersionless
flat band (FB) are curves for which the energy does not change with changes in wave vector
(Fig. 10).

FBs can give rise to localised states. They were introduced by Sutherland (1986) and
Lieb (1989) and then expounded upon by Mielke (1991) and Tasaki (1992). These localised
states can be used to transmit or localise information on specific sites of a lattice, which
could lead to advances in quantum computation. The term CLS was coined by Aoki,
Ando, and Matsumura (1996) to refer to a localised Wannier function constructed from a
superposition of degenerate Bloch waves.
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Figure 10: Dispersion curve showing a flat band in the lowest energy state. From Morsch
and Oberthaler (2006)

Anderson localisation occurs in a disordered system and is manifest by the localisation
of particles due to frustrated transport through the system. This is a quantum mechan-
ical effect as the particles are treated as following all possible paths, with constructive
and destructive interference of multiple paths through the disorder leading to localisation
(P. W. Anderson, 1958). Spatially localised modes in crystals were predicted to occur in
the presence of anharmonicity as opposed to the previously understood localisation due
to defects and disorder (Sievers and Takeno, 1988). BECs on lattices are expected to give
rise to an atomic band-gap structure, in analogy with photonic crystals. This band-gap
structure, in combination with the nonlinear effects of a BEC, were predicted to give rise
to localised bright gap solitons in 2D lattices (Ostrovskaya and Kivshar, 2003). A soli-
ton is a shape-preserving wave that is reliant on non-linear effects to counteract normal
dispersion. Intrinsic localised modes, including solitons and discrete breathers, are the re-
sult of intrinsic nonlinear effects rather than disorder or impurities (Campbell, Flach, and
Kivshar, 2004). A discrete breather is similar to a soliton but the wavefunction periodically
oscillates between a number of configurations.
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The lowest energy band of the 2D honeycomb lattice, such as that of graphene, was
found to be completely flat over the entire BZ (C. Wu et al., 2007). The flatness of the band
arises from the frustration of bosons’ kinetic energy by the particular lattice structure and
was found to occur in sawtooth and Kagome lattices. The flat band occurs in these cases
for a specific ratio between the hopping matrix elements of the different edges in these
triangular geometries. Localised eigenstates of the kinetic energy will arise in flat bands.
These compact localised states are wavefunctions that extend over only a subset of lattice
sites (Huber and Altman, 2010).

The Hall effect occurs in a current-carrying conductor exposed to a perpendicular mag-
netic field. In this case the electrons build up on one side of the conductor due to the
magnetic field, thus creating an electric field perpendicular to both the original electric
field and the magnetic field. The quantum Hall effect occurs in 2D electron systems at cold
temperatures and is typified by integer levels of current. The fractional quantum Hall effect
is more complicated and relies on composite fermionic quasiparticles, resulting in fractional
jumps of the the observed voltage (Parameswaran, Roy, and Sondhi, 2013). FBs in a non-
trivial topology are expected to allow the realisation of fractional topological states similar
to the fractional quantum Hall effect (Sun et al., 2011). These authors suggest a method to
produce models which allow a nonzero bandwidth of the FB but still require the bandwidth
to be much smaller than the band gap. They find that such models can arise even with-
out long range interactions, relying only on nearest-neighbour interations. These models
rely on time-reversal symmetry as well as lattice symmetries and a non-trivial topology.
When time-reversal symmetry is broken, band gaps with nonzero Chern numbers can open
up. The Chern number is the integral of the Berry curvature over a closed manifold. The
Berry curvature is a local gauge field associated with the Berry phase, which is a phase
difference acquired over the course of a cycle, which is the hopping of atoms around a
plaquette. Thus, the Chern number is a measure of the topology of a lattice energy band
and a non-zero Chern number implies a non-trivial topology. Yao et al. (2012) propose a
system for producing nontrivial Chern numbers in the band structure which result in FBs.
Their treatment relies on artificial gauge fields which interact with the spin of hard-core
bosons. Y. Zhang and C. Zhang (2013) examined SOC with bosons on lattices and show
that the instability of Bloch waves leads to the breakdown of superfluidity. The nonlinear
interaction of the GPE reduces the flatness of the dispersion curves but does not fully
eliminate it. SOC was first experimentally realised for fermions on an optical lattice in
2012 (Cheuk et al., 2012).



44 Theory

Leykam et al. (2013) introduce the quasi-one-dimensional diamond lattice and study
the interaction of the FBs with disorder, finding many interesting topological states. CLSs
generate FBs through perfect destructive interference. Disorder will expel all states from
the FB mode and also allow for fine-tuning of the FB singularities (Bodyfelt et al., 2014).
Experimental demonstration of FBs (without SOC) on a two dimensional Lieb lattice
showed the appearance of localised states (Taie et al., 2015). In the same year Mukher-
jee, Spracklen, et al. (2015), Mukherjee and Thomson (2015), and Vicencio et al. (2015)
reported the experimental realisation (without SOC) of a FB state in an array of optical
waveguides in Lieb and rhombic diagonal lattices. A theoretical framework for computing
flat-band generators where the CLS occupy two unit cells was provided by Maimaiti et al.
(2017). Röntgen, Morfonios, and Schmelcher (2018) developed a method for subdividing
the lattice Hamiltonian based on local symmetry partitioning.

Beličev et al. (2015) provide a theoretical treatment of SOC on 1D lattices with two-
component (spinor) BECs, which are BECs with two different spin states. They find the
existence of localised states and a miscible/immiscible transition between the binary spinor
species. Zeng, Zhu, and Sheng (2017) examine the theory of Hall effects in two-component
particle systems on a lattice.

So far much work has been done on BECs and BECs in lattices. Experiments have
recently realised SOC on lattices and some experiments have identified localisation on these
lattices. What has not been accomplished yet is the systematic generation of FBs and CLSs
on a lattice with BEC and SOC. CLSs can be used in quantum computation to store and
manipulate information. A better understanding of the behaviour of ultracold atoms in
optical lattices will lead to the realisation of exotic states of matter such as topological
insulators. Ultracold atoms on a lattice provide a framework for quantum simulation. The
ability to model condensed matter systems will assist in the design of materials suitable
for quantum simulation and quantum computation.

Discrete Model

The phenomenon to be examined in this proposal is laid out theoretically by Gligorić et al.
(2016). They propose a rhombic (diamond) lattice configuration of binary BECs exposed
to SOC (Fig. 11).

The unit cell has a three nodes a, b, c. Nodes a and c, which are colinear in the direction
perpendicular to the quasi-one dimensional axis and offset from that axis, are connected
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Figure 11: Diamond (rhombic) lattice showing different site labels. n is the unit cell. From
Gligorić et al. (2016)

to node b, which is connected to the next nodes a and c. This leads to a system of discrete
GPEs:
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where the ith unit cell has wavefunctions a±i , b
±
i and c±i and these wavefunctions are labelled

+ and − for the two different spinor components, for example, spin. B is an applied
magnetic field (Zeeman term), λ is the spin-orbit interaction strength, and γ, γ1, and ζ are
the nonlinear interaction strengths, which are determined by the inter-particle interactions
on the same node. The prediction is that under SOC with non-zero interaction strengths the
atoms will localise to a subset of a and c nodes and leave the b nodes empty. Fig. 12 shows
CLSs on a diamond lattice. For each sub-figure the top row shows the spin up configuration
and the bottom row shows the spin down configuration. It can be seen that the high density
states are localised to one or a couple of nodes. We can see that to implement this proposal
we need a BEC, a 2D trapping potential to confine the atoms in a single plane, an optical
lattice in that plane, an applied magnetic field, and Raman kick lasers for SOC.

Figure 12: Diamond lattices with CLSs identified as localised high density states. From
Gligorić et al. (2016)
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Ahmed and Omar

Cage the animal.
Daily you pray to your god —
free the man to soar.

Experiment

Following standard procedures we create a BEC of about 2·104 87Rb atoms in an all-optical
trap. This requires collecting the atoms in a MOT, laser cooling, and then evaporative
cooling. At this point the atoms are at a temperature of less than 200 nK. The atoms
are optically pumped into the |F = 1,mf = −1〉 state with a short pulse of the optical
pumping beam. The atoms are then transferred to a 2D pancake trap generated by two
1064 nm laser beams that intersect on a shallow angle. These lasers are far-red-detuned
from resonance and thus create an attractive potential for the atoms. Once the atoms are
in the 2D trap the optical lattice is ramped up. This potential is created by reflecting a
532 nm laser off a SLM and focusing it on the plane of the 2D trap. This light is far-blue-
detuned from resonance and so creates a repulsive potential, thus the potential wells are
created by an absence of light and the potential walls are created by the presence of 532 nm
light. The SLM can generate arbitrary 2D images and thus can be used to imprint a lattice
on the 2D trap (Haase et al., 2017). This 2D trap and optical lattice were designed and
installed by Donald White and Thomas Haase for their PhD projects (White, 2016). After
the 532 nm laser has been ramped to full power, the Raman kick lasers are pulsed to create
a SOC interaction, as described in Dylan Brown’s PhD thesis (Brown, 2019). The effect of
the kick laser is then imaged through time of flight (TOF) imaging to give a picture of the
motion of the atoms. TOF imaging gives a picture of the atomic momentum by recording
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the position of the atoms after they have ballistically expanded from a particular location
in space.

The plan was to first achieve SOC in the dipole-trapped BEC without an optical lattice.
Two coherent kick laser beams split by a polarising beam splitter and put through acousto-
optical modulators are coupled to optical fibres on one table and sent to the main science
chamber. The two kick laser beams enter the chamber from opposite sides and intersect at
an angle of π radians.

The kick laser is red-detuned with the detuning, ∆, about 790 nm, which minimises
the scalar light shift between the D1 and D2 lines. A magnetic Zeeman field of about
5 Gauss is applied in the z-direction to split the magnetic sublevels. This field will also
produce a Zeeman shift to eliminate the |F = 1,mf = 1〉 state. The magnetic field strength
in combination with ∆, the kick laser intensity, and the detuning between the two kick
lasers determine the Rabi frequency between the two pseudo-spin states as well as the
small detuning from the magnetic sublevels. As mentioned above, one of the kick beams is
circularly polarised and the other linearly polarised. The frequency offset between the two
kick beams and the kick beam intensity is scanned to find the value that gives the greatest
transition number into the other spin state. After each experimental shot the atoms are
imaged through TOF and the atom numbers in the spin states counted. The spin states
are identifiable because there is a momentum kick imparted on atoms in one spin state so
that that state will be in a different position from the original un-kicked BEC. Each day
the environmental effects had to be compensated for and so the combination of magnetic
field strength and Raman detuning was scanned before the actual experiments. Figure 13
shows an example of a daily scan of a Raman kick of a BEC.

Next, an optical lattice was to be introduced. With respect to the lattice geometry,
we are beginning with the diamond lattice described above. What was not reported in
the theoretical treatment was the size of the nodes in the lattice and the spacing between
them. The optical resolution of the SLM is about 1 µm thus the nodes will be a minimum
diameter of 1 µm. Initially we were to begin with the diagonal spacing between the nodes
(at an angle of π/2 radians) of between 1 and 3 µm. Images of lattices were to be loaded
with the SLM and the time required to fill the nodes measured. Once this was achieved
the loaded lattice, was to be illuminated with the kick beam and TOF images of the BEC
examined to see whether there was the generation of CLS.

The current SLM has limitations. For example it is not realistically possible to use
greyscale images that result in variable potential energies across the image because of issues
with the refresh rate. Also, the switching between images is not sufficiently responsive
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Figure 13: Scan of Raman detuning

for the experimental parameter regime in which we operate. To rectify this, we have a
digital micro-mirror device (DMD) that we prepared. I designed and had the engineering
department manufacture an adapter plate to mount the DMD face on a kinetic mount. I
implemented a complete specification of the Visitech communication protocol and wrote
a program to upload images to the DMD and run scripts, such as one that could scroll a
diamond potential. This will replace the SLM and be able to produce greyscale images and
rapidly swap between multiple images. As the DMD is a grid of mirrors that are either in
the reflecting position or not, a greyscale image is produced by the successive swapping of
many binary images to build up a layered potential. One advantage of the fast switching
allowed by the DMD is to be able to initially load atoms into a subset of potential wells and
then switch to the experimental regime where SOC can cause vacant nodes to be occupied.
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New Apparatus

There was some difficulty in aligning the 2D pancake trap in such a way as to not introduce
laser fringing. Currently, the experiments that have been run on the apparatus use a small
tilt in the pancake trap to introduce a gravitational force to overcome the fringing. This
was arrived at after months of manipulations of the experimental apparatus to try and
get rid of the fringing. This work-around would not have been possible for the current
study. One possible cause of the fringing is that the windows into the chamber are not
anti-reflective coated for 1064 nm light, the wavelength of our pancake trap. A solution to
this is to swap to our new, small, glass science cell, designed by my supervisor.

Using the glass cell as the target science chamber, I designed the apparatus and bread-
board for a new setup. The system is a three chamber system with two initial MOTs and
a variable focus telescope to move atoms cooled in a hybrid magnetic/optical trap in the
seond chamber to the science chamber.

With the new apparatus, I designed and partially implemented a control program in
Python. The control program is unique in that the design of waveform generation to control
experimental unit is modular. There can be a section for laser-cooling, a section for trap
refocusing, a section for BEC creation, and a section for SOC manipulation. As part of
the control program, I implemented a machine learning algorithm that uses a 6 layer MLP
neural net to optimise BEC creation 1

Further Experiments

One experiment that would be interesting to implement is to introduce SOC on an annulus.
This circular potential is theorised to introduce a stripe phase in the distriution of pseudo-
spin particles. What would be more interesting, however, is to design an experiment to test
the mechanism behind Berry phase. On a plaquette, when a condensate travels around a
minimal plaquette, it is supposed to gain a geometric phase. This is caused by the orbit
about a pole in the complex space. An alternative explanation is that phase is advanced
or retarded when a particle crosses a spatial barrier, such as the membrane of a quantum
foam. In this case, traveling from A to B should gain the same phase as travelling from B

to A, meaning it is not undone. Thus if phase is acquired even without a notion of rotation,
then there is an alternative explanation for Berry phase.

1As mentioned earlier, all this code is on Gitub
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Valour

Hidden memory,
Your presence my mind unfolds —
on my chest with you.

As has been mentioned, ultracold atom experiments provide a clean and versatile work-
bench for examining analogies to other physical systems. One apparent drawback, how-
ever, is that the atoms used in the experiments do not carry an electric charge and thus it
would appear that many areas of enquiry are not available. This is not the case, however.
Synthetic gauge fields can be engineered to mimic electronic effects. The Coriolis force
generated by rotating a condensate has been used to mimic a magnetic field, and use of
laser fields has been used to mimic electric forces and spin-orbit coupling. The synthetic
electromagnetic forces are introduced into the Hamiltonian as a vector potential term (See
Appendix A). The effects of this term are carefully engineered to observe the desired be-
haviour in experiments. One way to derive the appropriate Hamiltonian is to to express
the laser and magnetic fields in terms of the vector potential and then crank through some
tedious algebra.

In our experiment, SOC is achieved by coupling linear momentum to different magnetic
states by having a detuning between counterpropagating laser beams that matches the
energy gap and induces a Raman transition. As explained in Brown (2019), we choose an
overall laser detuning that removes the scalar light shift. Our system uses 87Rb and we
choose the F = 1 manifold. The scalar light shift is voided at a detuning halfway between
the D1 and D2 lines, so we shall have to consider both lines in our derivation. I had written
down the Hamiltonian for the simulations and it matched the Hamiltonian later given to
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me by Casper Groiseau, a student of my co-supervisor Scott Parkins, who had suggested
I follow the technique in Masson (2019).

Ĥ =
p2

2m
+ ωzŜz −

Ω2

4
cos (2k∆y − 2∆ωt)Ŝx. (7.1)

Following Pitaevskii and Stringari (2016) we make a unitary transform into a frame
rotating at 2∆ω and moving with momentum 2k∆y. We also flip the spin every rotation.
So we apply the operator

exp
(

(2k∆y − 2∆ω)tŜz

)
. (7.2)

The momentum component does not commute with the kinetic term in the Hamiltonian
so we use the Hausdorff-Baker theorem to compute the action of the transform. We are
left with the transformed Hamiltonian

ĤSOC =
1

2m

[(
py − k∆Ŝz

)2

+ p⊥

]
− Ω2

4
Ŝx +

δ

2
Ŝz, (7.3)

where δ is the Zeeman detuning. Note that the k∆ŜZ term is a manufactured synthetic
electromagnetic field (See Appendix A), a synthetic guage field that has resulted from
transforming a Hamiltonian. In the frame of reference traveling in the cylindrical corkscrew
of the unitary transformation, atoms of one spin will move in one direction, and atoms of the
opposite spin will move in the opposite direction. This transformation obviously introduces
an energy shift in the Hamiltonian, as explained in Chapter 3, and so this would bolster
the evidence that condensates can exist above the ground state.

Spinor GPE Model

Taking the SOC Hamiltonian, we eliminated one of the spin states and only consider a
pseudo-spin half system. Experimentally, this was achieved through adiabatic elimination
of a spin state through the use of a static magnetic field sufficiently strong to bring a
Zeeman shift into effect, here, we merely use a spinor system with 2× 2 spin operators.

The lattice was implemented as a potential with circular wells of a particular depth in
the diamond configuration. The depth of the wells was calculated from measurement of
the SLM 532 nm laser power. The lattice is thus a static position-dependent potential that
we can add to the Hamiltonian. In order for the potential to be static in the transformed
frame of reference, it must be moving at k∆ in the experimental frame of reference.
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This Hamiltonian was implemented using the Quantum Optics package (Krämer et al.,
2018) using natural units. Physical units were then calculated once the simulations had
concluded.

Three unit cells were simulated. Equal densities were apportioned to the b nodes and
the simulation was run. It can be seen from Figure 14 that the different spin populations

Figure 14: Spin populations of full spinor SOC Hamiltonian. The pump strength, Ω is 4
recoil units, the Zeeman splitting is 5.845 MHz, the radius of the wells is 0.8 µ and the
separation is 1.5 µm. The SLM can resolve 0.8 µm.

travel in different directions, that there is conversion from one spin population to another,
and that there is tunneling between nodes. What is not present is any signature of CLSs.
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The density movement is symmetric in space. Also, when the simulation is run further, the
atoms travel outside the wells. There is a trade-off, if the wells are too deep, tunneling will
not occur. As can be seen, the wells are not sufficiently deep to contain the atoms.

In order to attempt to remedy this problem, channels were added between the nodes.
This was for the computer simulation, experimentally, the width of the channels are not
resolvable. Figure 15 shows that the particles do follow the channels somewhat, but spill

Figure 15: Spin populations of full spinor SOC Hamiltonian. The pump strength, Ω is 4
recoil units, the Zeeman splitting is 5.845 MHz, the radius of the wells is 0.8 µ and the
separation is 1.5 µm. The SLM can resolve 0.8 µm.

over the edges of the potential. What is not observed is the creation of CLSs, the atoms
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separated symmetrically. This led to questioning the original model. While the argument
appears sound, since we did not reproduce the results with the full GPE model, we won-
dered if there was some property of using discrete nodes that led to the observation of
CLSs.

Gligorić’s Discrete GPE

The discrete model was implemented verbatim using the DifferentialEquations package of
Julia (Bezanson et al., 2017). The same non-linearity parameters, γ = γn = ζ = 1 were
used, as well as a zero magnetic field, B = 0. The SOC parameter was λ = 2, exactly as
in the figures of (Gligorić et al., 2016). Figure 16 shows the results of running the discrete
model. With periodic boundary conditions, there was a symmetric distribution of densities
between unit cells. Within unit cells, the distribution depended upon the spin state, but
the b nodes were not all empty, as in the paper. Attempting to reproduce the uneven
distribution, we looked at Dirichlet boundary conditions, in which the boundary values
were locked to zero. The overall distribution was Gaussian, centred in the middle of the
lattice and there was also separation of spin state, however, the distribution across unit
cells still remains symmetrical. Figure 17 shows a time-series of one node.

We were unable to find CLSs using the discrete model. There was definitely separation
of spin states, with the b node being occupied by one spin state and the a and c nodes
being occupied by the opposite spin state. This is definitely different from the full GPE
model. The difference lies in the fact that in the discrete model there is no way for atoms
to spill over the node edges, and atoms can move backwards and forwards between the
nodes. In the full GPE model the spin-flip operation was insufficiently strong to flip atoms
quickly enough to then cause them to travel in the opposite direction. If we had used
random initial conditions, with densities not uniformly spread over the b nodes, then it is
likely that uneven distributions would arise. The theory behind the discrete model appears
sound. Certain lattice configurations will generate flat bands that lead to localised position
eigenstates. It seems that two factors have led to the inability of our two simulations to
generate CLSs. The full GPE model could not contain the atoms in the potential and the
discrete model did not undergo symmetry-breaking.
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Figure 16: Left panels show Dirichlet boundary conditions and Right panels show periodic
boundary conditions. Top panels are all twenty nodes and bottom panels show the central
nodes. Each unit cell has 6 nodes, 3 spin up and 3 spin down. From left to right, the node
order is a+, a−, b+, b−, c+, c−
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Figure 17: Time series of node 9 for λ = 10





Conclusion

Form and Emptiness

Body, supple and strong,
wind runs through my empty form —
All at once.

How does the energy in a collective mode get transferred as useful work? Nonlinear
crystals use wave mixing to stimulate electronic stimulation and emission. Can a breathing
mode transfer collective energy? One possible mechanism by which collective oscillations
generated by the action of the Na+/K+ pump could transfer energy is with the triggering
of release of a membrane depolarisation.

One possible test to look for collective oscillations at the cellular level is to use a grid
of electrodes to record the membrane signal of a Xenopus laevis oocyte in vitro. These
frog eggs are large and are often used for patch-clamp neurophysiology experiments that
examine the properties of transmembrane channels. The observations work by filling a
micropipette with ionic fluid, trapping a single protein in the opening of the pipette, and
measuring electrical changes with changes in treatment. What this method fails to reveal
are the interactions between neighbouring proteins. By using a microelectrode array, such
as that used with eCOG experiments with epileptic patients, the spatial variation in the
field created by the Na+/K+ pump activity can be examined and searched for any collective
behaviour. The ability of a condensate to exhibit superfluid coherent properties is a function
of the interparticle force. So whether a condensate is a mesoscopic quantum object as a
physical gestalt might best be left to philosophers.

As far as consciousness is concerned, is a condensate actually an addressable physical
entity or is it merely a mathematical representation? Whether conscious awareness requires
quantum phenomena might depend on whether one maintains that thought can be super-
posed or entangled. Perhaps this depends upon ideology. Even if condensates were related
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to a mechanism behind a cohesive experience, they appear to be merely a mode of energy
storage rather than a physical explanation for the reality of qualia1. Perhaps the stretching
of intersitial water molecules by membrane depolarisation induces nuclear contortions.

A condensate occurs when the interparticle spacing matches the matter wave extension.
This implies that there is indeed some sort of shared reality and perhaps a physical unity
arises. Certainly in certain representations, such as that of superposed number states, the
representation implies a shared physical state.

If there is a shared physical state, then it seems that there should be some way to address
the sum energy of the state and manipulate it to do useful work. Collision experiments
between condensates show partial transparency and halos, which, while calculable in terms
of the whole, can be explained by particle dynamics. Collective oscillations while interesting,
need to be able to transfer energy. Quantum mechanically, wave mixing, where different
energies of light join to create a packet of total energy, at the microscopic level works
via electron excitation and de-excitation. What sort of mechanism could harness the sum
energy of a condensate or collective oscillation and transfer it downstream?

When the de Broglie wavelength reaches the interparticle spacing, there is a need to
represent the system of particles as an entangled superposition and thus each constituent
is inseparable from the others, but is this merely a property of the signs we use to represent
the reality? A label is a nifty means to attach a handle to a concept, but does that reification
occur in the condensate system or in the mind of the researcher? But then, if a gestalt
occurs in the mind, and we accept some sort of panprotopsychist position, then that gestalt
must have a material correlate, and is this a phenemenon such as a condensate?

If quantum mechanical phenomena are involved in consciousness, as mentioned in the
introduction, then perhaps room temperature quasi-particles that hold their shape can be
created by the brain. A likely location is the reticular formation of the thalamus, where
those cells fire unless activated, and thus the activity highlights negative space. Memo-
ries are coordinated in the hippocampus, and various cortical columns, which represent a
particular iota, are activated by the re-experiencing of a memory. The coordination likely
occurs in the fronto-temporal region, where these iota are high-level representations. If a
cortical column, as a collection of neurons, activates a particular pattern in the thalamus,
and this pattern activates more experiential regions such as a pattern if visual cortex firing,
then a sign of degradation of memory would be the inability of that column to activate
a memory. Like a Hopfield network, that column would require a minimum pattern of
connectivity. Furthermore, like Plato’s aviary and a Hopfield network, memories require

1A quale is an iota of felt experience
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association. If an idea is subsequently contradicted, then there exists the danger that the
iota connected with the contradicted idea become inaccessible. One clinical approach to
ameliorating this decline would be to provide neurotrophic growth factors, such as in Olan-
zapine, in concert with auditory and visual re-stimulation and activation of networks that
access those memories.

Examining the thermodynamic properties of a gas of bosons reduces the analysis to
a spectrum of energy levels, and in this sense, all the particles in a condensate share a
quantum state, however, in reality, particles have a massive nucleus, a position, and a
momentum. The particles in a condensate do not all share the same position, even though
their momenta might be close to identical, and so do indeed occupy a small volume of phase
space. What quasi-particles lack is a massive nucleus, and so, a condensate of quasi-particles
might indeed be closer to a mesoscopic quantum entity that can collectively transfer energy.

Light pulses have been stored in an atomic condensate cloud of Na atoms (R. Zhang,
Garner, and Hau, 2009). The authors describe the light pulse as being imprinted on the
collective wave function shared by all the atoms and then retrievable up to a second later.
This interpretion, as opposed to the claim that the light pulse is transferring rapidly within
the individual atoms in the cloud, certainly suggests that there is a collective quantum
entity.

A condensate, be it ultracold alkali atoms, or quasi-particles, arises from a light-matter
interaction. Electromagnetic energy interacts non-linearly with matter and leads to a non-
dispersing collective packet of energy, that can breathe, that can propagate, that can in-
teract, and that can represent state. Bose condensates provide a fascinating look into the
world of the quantum, near the uncertainty limit and will provide a fertile ground for future
investigation.

Light fields, specifically Raman two-photon transitions, can be used to couple the state
of a condensate to its linear momentum. This introduces the equivalent of an electromag-
netic force and thus, if it is possible to engineer CLSs then it is not inconceivable that
a chemistry of condensates on lattices could be engineered. Using entanglement between
condensates, a condensate molecule could be used to represent a unit in a quantum algebra
that can be manipulated with algebraic operations.

Compact localised states result from there being a flat band in the momentum dis-
persion curve, so that there is a potential saddle in the distribution of atoms in position
space, which would result in localisation. Another mechanism of localisation is Anderson
localisation, which results from destructive interference in possible closed paths brought
about by disorder in the potential.
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Attempting to reproduce Gligorić’s hypothesis theoretically was unsuccessful. The re-
sults might well have been reproduced in the experiment because of the natural disorder
that might be present in an SLM image, thus leading to a symmetry breaking in space and
a resultant appearance of CLS.

We successfully conducted the experiment and provided the theoretical claim to prove
that Einstein’s assertion about the zero-kinetic energy requirement for condensation was
false. We showed, using the de Broglie wavelength, that it is reasonable to expect room tem-
perature quasi-particle condensates. I discussed phase coherence and collective oscillations,
showing that the Na+/K+ pump meets Fröhlich’s requirement for biological condensation.
I have argued for the importance of a phase-alignment mechanism. Finally, I have discussed
the theoretical claim that consciousness is quantum mechanical.
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Electromagnetic Fields

Lorentz Force Law

The derivation here is scattered throughout Cohen-Tannoudji, Diu, and Laloe (1977). In
1895 Lorentz derived his law that describes the force exerted on a moving, spin-less charged
particle in an electric and a magnetic field,

F = q(E + v ×B), (A.1)

where q is the charge and v is the velocity of the particle.
We start with Maxwell’s equations,

∇ · E =
ρ

ε0
(A.2)

∇× E = −∂B
∂t

(A.3)

∇ ·B = 0 (A.4)

∇×B = µ0j + ε0µ0
∂E

∂t
, (A.5)

where ρ is the volume charge density and j is the current density, which imply the
existence of a vector potential A and a scalar potential φ such that,

B(r, t) = ∇×A(r, t) (A.6)

E(r, t) = −∇φ(r, t)− ∂

∂t
A(r, t). (A.7)

We are working with electromagnetic fields in a vacuum (except for the actual target
atoms), so we choose to work in the radiation (Coulomb) gauge, ∇ · E = 0. Rewriting
Lorentz’s force law,

mr̈ = q[E(r, t) + ṙ×B(r, t)]. (A.8)
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Projecting onto an axis, in this case the x- axis, we have

mẍ = q[Ex + ẏBz − żBy] (A.9)

= q

[
−∂φ
∂x
− ∂Ax

∂t
+ ẏ

(
∂Ay
∂x
− ∂Ax

∂y

)
− ż

(
∂Ax
∂z
− ∂Az

∂x

)]
(A.10)

Guessing the Lagrangian

L(r, ṙ, t) =
1

2
mṙ2 + qṙ ·A(r, t)− qφ(r, t), (A.11)

we have,

∂L
∂ẋ

= mẋ+ qAx(r, t) (A.12)

∂L
∂x

= qṙ · ∂
∂x

A(r, t)− q ∂
∂x
φ(r, t). (A.13)

From Lagrangian mechanics we know that

d

dt

∂L
∂q̇i
− ∂L
∂q

= 0, (A.14)

so,

d

dt
[mẋ+ qAx(r, t)]− qr ·

∂

∂x
A(r, t) + q

∂

∂x
φ(r, t) = 0. (A.15)

Applying the time derivative we have,

mẍ+ q

[
∂Ax
∂t

+ ẋ
∂Ax
∂x

+ ẏ
∂Ax
∂y

+ ż
∂Ax
∂z

]
− q

[
ẋ
∂Ax
∂x

+ ẏ
∂Ay
∂x

+ ż
∂Az
∂x

]
+ q

∂φ

∂x
= 0, (A.16)

Thus,

mẍ = q

[
−∂φ
∂x
− ∂Ax

∂t
+ ẏ

(
∂Ay
∂x
− ∂Ax

∂y

)
− ż

(
∂Ax
∂z
− ∂Az

∂x

)]
, (A.17)

which is exactly equation A.10.
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We can calculate the conjugate momentum, which is no longer the mechanical momen-
tum mṙ, from the Lagrangian,

px =
∂L
∂x

= mẋ+ qAx(r, t), (A.18)

so,

p = mṙ + qA(r, t), (A.19)

and

mṙ = p− qA(r, t). (A.20)

We now convert to the Hamiltonian,

H(r,p, t) = p · ṙ− L(r, ṙ, t) (A.21)

= p · 1

m
(p− qA)− 1

2m
(p− qA)2

− q

m
(p− qA) ·A + qφ (A.22)

=
1

2m
[p− qA(r, t)]2 + qφ(r, t), (A.23)

and since in the Coulomb gauge the scalar potential is zero, we are left with

H(r,p, t) =
1

2m
[p− qA(r, t)]2. (A.24)

Thus, if a moving, spinless, charged particle is in an electromagnetic field, this is the
single particle Hamiltonian.

Expanding the Hamiltonian We can expand the quadratic term in the Hamiltonian,

Ĥ(t) =
1

2m
p2 − q

2m
p ·A(r, t)− q

2m
A(r, t) · p +

q2

2m
A(r, t)2 (A.25)

We keep the vector potential classical and substitute the quantum mechanical momen-
tum, p = −i~∇, so that we have the term

− q

2m
p ·A(r, t)− q

2m
A(r, t) · p = −i q~

2m
(∇ ·A + A · ∇) . (A.26)



68 Electromagnetic Fields

Since, by the chain rule, ∇ · A = (∇ · A) + A · ∇, and the first term is zero in the
Coulomb gauge, we have

− q

2m
p ·A(r, t)− q

2m
A(r, t) · p = i

q~
m

A · ∇ = − q

m
A(r, t) · p, (A.27)

and our Hamiltonian reads

Ĥ(t) =
1

2m
p2 − q

m
A(r, t) · p +

q2

2m
A(r, t)2 (A.28)

Zeeman Effect

In 1896, Zeeman discovered that a strong magnetic field would split lines in the emission
spectrum of Sodium. The vector potential for a uniform magnetic field, B0 is

A(r, t) = −1

2
r×B0. (A.29)

Using vector identities,

− q

m
A(r, t) · p =

q

2m
(r×B0) · p =

q

2m
B0 · (r× p) (A.30)

=
q

2m
B0 · L, (A.31)

where L is a generic angular momentum operator.
If we set a static magnetic field to be parallel to the z-axis, B0 = Bzez, then we have

A(r, t) =
1

2
Bz(−yex + xey). (A.32)

We can see

q

m
A(r, t) · p =

q

m

1

2
Bz(−yex + xey) · p (A.33)

=
q

2m
Bz(−ypx + xpy), (A.34)

and the quantity (xpy − ypx) is exactly the component of angular momentum in the
z-direction, Lz. While this is a classical derivation from the notion of torque generated by
a loop current, we can easily substitute quantum angular momentum operators for L.

Looking at the term quadratic in A(r, t), we have
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A(r, t) ·A(r, t) =
1

2
Bz(−yex + xey) ·

1

2
Bz(−yex + xey) (A.35)

=
1

4
B2
z (x

2 + y2) (A.36)

This leads to the Hamiltonian

Ĥ =
1

2m
p2 − q

m
B0 · L +

q2

8m
B2
z (x

2 + y2) (A.37)

The angular momentum operator Lz will choosem` energy levels, with energy difference,

∆Elin = m`
q~
2m

Bz, (A.38)

This is the linear Zeeman effect and can be used to split the energy levels of differ-
ent magnetic angular momentum states. The energy splitting attributable to the term
quadratic in Bz gives rise to a small energy shift,

∆Esquare =
q2

8m
B2
Z(x2 + y2) (A.39)

When we looked at the angular momentum operator, that is in fact for a linear interac-
tion. When we take into account the interactions between different shapes of the electron
distribution, there can be higher-order interactions, such as between the s− and d− levels.
Higher mass alkali atoms are not completely hydrogenic, as there are quantum defects and
higher angular momentum quantum orbitals (`), can be of lower energies than ` = 2.

Spin and Magnetic Fields

The Stern-Gerlach experiment uncovered a previously unknown purely quantum mechan-
ical feature of quantum particles, spin, which is an intrinsic angular momentum that is
quantised (Gerlach and Stern, 1922). The existence of spin is contained in the spin-statistics
theorem and the Pauli exclusion principle (Pauli, 1940).

The intrinsic magnetic moment µ of a particle with spin angular momentum, S = ~
2
σ,

is

µ =
gsq

2m

~
2
σ, (A.40)

where gs is the spin g-factor, which is about 2, and σ is the vector of Pauli spin matrices.
These matrices for a spin-1 system can be derived from the spin-1/2 Pauli matrices and
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can be decomposed into a one-dimensional singlet matrix and a three-dimensional triplet
matrix,

σx =
~√
2

0 1 0

1 0 1

0 1 0

 , (A.41)

σy =
~√
2

0 −i 0

i 0 −i
0 i 0

 , (A.42)

σz =
~√
2

1 0 0

0 0 0

0 0 −1

 . (A.43)

The force felt by a particle with spin in a magnetic field is

F = −∇(µ ·B), (A.44)

and so the potential is

U = − q~
2m
σ ·B. (A.45)

= − q~
2m
σ · ∇ ×A(r, t) (A.46)

Multiple Electromagnetic Potentials

If we have two electromagnetic potentials, for example, one for a laser field, AL, and one
for a magnetic field, AM , then we can treat them separately as the dot product distributes
over addition and the gradient operator also distributes over addition,

A · p = (AL + AM) · p = (AL · p) + (AM · p) (A.47)

∇×A = ∇× (AL + AM) = (∇×AL) + (∇×AM) (A.48)
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Spin-Momentum Hamiltonian

We derived the Hamiltonian for an atom in an electromagnetic field, in this case we have
two fields, the laser fields and the static magnetic field,

ˆHEM =
1

2m
(p−A(r, t))2 . (B.1)

The electromagnetic fields can be separated,

A(r, t) = AL(r, t) + AM(r, t). (B.2)

Leading to,

ĤEM =
1

2m

[
p2 − 2q (AL(r, t) + AM(r, t)) · p + q2(AL(r, t) + AM(r, t))2

]
(B.3)

The kinetic energy term can be taken out and we may include a static, scalar potential,
such as a harmonic trap, U(r, t) = −kr2, leading to the atomic term,

Ĥ0 =
1

2m
p2 + U(r). (B.4)

We can break down the remaining terms into interaction terms and quadratic terms,

ĤI = − q

m
(AL(r, t) + AM(r, t)) · p (B.5)

ĤQ =
q2

2m

(
AL(r, t)2 + AL(r, t) ·AM(r, t) + AM(r, t)2

)
. (B.6)
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In the interaction term, the potentials are separable, leading to two terms, one the
recognisable interaction term normally reduced to the electric dipole interaction, and the
other the term that expresses the interaction of an atom with a static electromagnetic field,

ĤI = − q

m
AL(r, t) · p− q

m
B0 · L. (B.7)

In the quadratic term we have first a laser term, the intensity for which required is too
high an energy beam achievable only by a short-pulse, the interaction of the laser field and
the static magnetic field, which may couple via the atom, and finally, the magnetic field
term. The first of these terms may be discarded. For the second term, the diameter of an
atom is around 10−10 m, whereas the wavelength of the laser we used in our experiment is
around 10−6 m, so the atom, to first approximation, neglecting the wavevector dependence,
sees a constant electromagnetic field. From equation A.39, we can see that the energy shift
of the second term in B.6 above is not asymmetrical and thus would not lead to the ability
to adiabatically eliminate a spin state, what is more, this term increases the energy of all
spin states equally in the same directon, leaving us free to ignore this term when relying
on relative energy gaps between sub-states — this term may be gauged away. Thus, we
may ignore all three quadratic terms.

We must point out that the quadratic interaction term involves an oscillating field and
a static magnetic field, both of which are nearly resonant with the atom, one with the
hyperfine splitting and the other with the spin moments. This would be manifest as slow
wave breathing if at all possible.

So we have a perturbation to the Hamiltonian. In the case we are modelling, we have
the following perturbation to the single particle Hamiltonian,

V̂ = − q2

2m
AL(r, t) · p− q2

m
B0 · L, (B.8)

leading to our Hamiltonian,

Ĥ = Ĥ0 + V̂ . (B.9)

Counter-propagating beams

Here we draw from Goldman (2014) and Pitaevskii (2016).We orient our coordinate system
so that the axis of quantisation, the direction of the static magnetic field, is the vertical
z-axis, and our laser beams propagate along the y-axis. The vector potential of a single
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monochromatic source propagating in the y direction with angular frequency, ω, and with
wavevector k = ω

c
, is

AL(r, t) = −A0 exp i(ky − ωt)ex − A∗0 exp−i(ky − ωt)e∗x (B.10)

= −A0 exp i(ky − ωt)ex + complex conjugate

We choose A0 to be pure imaginary. Eliding the complex conjugate for the moment,
if we have two counterpropagating beams, A,B, of orthogonal linear polarisation sourced
from the same laser, directed through a linear polariser, and split with a polarising beam-
splitter, thus locking the phase,

AL(r, t) = AL(r, t)A + AL(r, t)B (B.11)

= −A0 exp i(kAy − ωAt)ex
+A0 exp−i(kBy − ωBt)ez. (B.12)

Using the definitions with a frequency offset of 2ω∆, so that

kA = k + k∆ (B.13)

kB = k − k∆ (B.14)

ωA = ω + ω∆ (B.15)

ωB = ω − ω∆, (B.16)

and the abbreviations

e±A = exp±i(kAy − ωAt) (B.17)

e±B = exp±i(kBy − ωBt) (B.18)

e± = exp±i(ky − ωt) (B.19)

e±∆ = exp±i(k∆y − ω∆t), (B.20)

we have

AL(r, t) = −A0[eAex − e−Bez] (B.21)

= −A0e
∆[e+ex − e−ez]. (B.22)
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Then,

BL(r, t) = ∇×AL(r, t) (B.23)

= −iA0[kBe
−Bex − kAeAez] (B.24)

= −iA0e
∆[kBe

−ex − kAe+ez] (B.25)

Using the identities for right- and left- circular polarised light,

e+ =
1√
2

(ex + iez) (B.26)

e− =
1√
2

(ex − iez), (B.27)

we have for x- and z- linearly polarised light,

ex =
1√
2

(e+ + e−) (B.28)

ez = −i 1√
2

(e+ − e−). (B.29)

Substituting these in we have,

AL(r, t) = −A0e
∆[e+ 1√

2
(e+ + e−)− e−(−i) 1√

2
(e+ − e−)] (B.30)

= −A0e
∆ 1√

2
[e+e+ + e+e− + ie−e+ − ie−e−] (B.31)

= −A0e
∆ 1√

2
[(e+ + ie−)e+ + (e+ − ie−)e−] (B.32)

and

BL(r, t) = −iA0e
∆[kBe

− 1√
2

(e+ + e−)− kAe+(−i) 1√
2

(e+ − e−)] (B.33)

= −iA0e
∆ 1√

2
[kBe

−e+ + kBe
−e− + ikAe

+e+ − ikAe+e−] (B.34)

= −iA0e
∆ 1√

2
[(k − k∆)e−e+ + (k − k∆)e−e−

+i(k + k∆)e+e+ − i(k + k∆)e+e−] (B.35)

= −iA0e
∆ 1√

2
[(k(e− + ie+)− k∆(e− − ie+))e+

+(k(e− − ie+)− k∆(e− + ie+))e−]. (B.36)
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Using the identities

eθ + ie−θ =
√

2ei
π
4 · sin

(
θ +

π

4

)
(B.37)

eθ − ie−θ =
√

2e−i
π
4 · cos

(
θ +

π

4

)
(B.38)

e−θ + ieθ =
√

2ei
π
4 · cos

(
θ +

π

4

)
(B.39)

e−θ − ieθ =
√

2e−i
π
4 · sin

(
θ +

π

4

)
, (B.40)

Setting θ = ky − ωt+ π
4
, we have

AL(r, t) = −A0e
∆ 1√

2

[√
2ei

π
4 sin θe+ +

√
2e−i

π
4 cos θe−

]
(B.41)

= −A0e
∆ei

π
4 [sin θe+ − i cos θe−] (B.42)

and

BL(r, t) = −iA0e
∆ 1√

2

[(
k
√

2ei
π
4 cos θ − k∆

√
2e−i

π
4 sin θ

)
e+

+
(
k
√

2e−i
π
4 sin θ − k∆

√
2ei

π
4 cos θ

)
e−

]
(B.43)

= −iA0e
∆ei

π
4 [(k cos θ + ik∆ sin θ) e+

+ (ik sin θ + k∆ cos θ) e−] . (B.44)

Now, recalling that e∗+ = e−, we write the complex conjugate,

AL(r, t) = −A0e
∆ei

π
4 [sin θe+ − i cos θe−]

+A0e
−∆e−i

π
4

[
sin θe∗+ + i cos θe∗−

]
(B.45)

and

BL(r, t) = −iA0e
∆ei

π
4 [(k cos θ + ik∆ sin θ) e+

+ (ik sin θ + k∆ cos θ) e−]

−iA0e
−∆e−i

π
4

[
(k cos θ − ik∆ sin θ) e∗+

− (ik sin θ − k∆ cos θ) e∗−
]
. (B.46)
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Unitary Transform We now digress. If we want to make a canonical transform of
coordinates accompanied by a unitary transform of the Hamiltonian, the wavefunction
changes

ψ → ψ′ = Uψ (B.47)

and the Hamiltonian changes

Ĥ → Ĥ ′ = UĤU † + i~U̇U †. (B.48)

We are going to perform a combined rotation and spin flip, so that our transformation
is

U = exp−i(k∆y − ω∆t) · σx, (B.49)

This will act to rotate the cylindrically polarised unit vectors,

e+ → exp−i
(
k∆y − ω∆t+

π

4

)
· σxe+ (B.50)

e− → exp−i
(
k∆y − ω∆t+

π

4

)
· σxe− (B.51)

e∗+ → exp i
(
k∆y − ω∆t+

π

4

)
· σxe− (B.52)

e∗− → exp i
(
k∆y − ω∆t+

π

4

)
· σxe+, (B.53)

So, delaying applying the transform to the Hamiltonian, we change our basis vectors,
and the slowly moving ∆ wave is transformed away,

AL(r, t) = −A0 expσx [sin θe+ − i cos θe−]

+A0 expσx [sin θe− + i cos θe+]

= iA0e
σx
[
eiθe+ + e−iθe−

]
(B.54)

and

BL(r, t) = −iA0 expσx [(k cos θ + ik∆ sin θ) e+

+ (ik sin θ + k∆ cos θ) e−]

−iA0 expσx [(k cos θ − ik∆ sin θ) e−

− (ik sin θ − k∆ cos θ) e+] (B.55)

= −iA0e
σx
[
k(e−iθe+ + eiθe−) + k∆(eiθe+ + e−iθe−)

]
. (B.56)
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If we look at the exponential terms and only consider first order interactions, then the
following approximation holds,

e∓i(ky−ωt) = e∓ikye±iωt = e±iωt · [1± iky − 1

2
k2y2 + . . .] = e±iωt, (B.57)

and so the energy shift is symmetric. Only when moments higher that the quadropole
term are considered will there be an adiabatic elimination becaue of the energy difference
between paramagneticly and diamagnetically aligned spin moments in the static magnetic
field and also the powers of i introduce and directional asymmetry.

Comparison with Masson

I attempted to follow the derivation of Masson, but needed to include both upper manifolds,
because in the experiment the lasers were detuned at the wavelength that minimises the
scalar light shift, have, setting Ω+ = Ω− = Ω± = 1

2
Ω, the detunings, where we consider

ωA = ωB = ω for the detunings and ∆2 = ω− ω2 and ∆1 = ω− ω2, the Hamiltonian has a
prefactor,

− 1

48
A2

0Ω2
± (B.58)

and his method leads to

Ĥ =

(
32

1

∆2

+ 16
1

∆1

)
1

−

 0 e−iωt 0

eiωt 0 e−iωt

0 eiωt 0

 8
√

2

(
1

∆2

− 1

∆1

)
cos ((kA − kB)y − (ωA − ωB)t)

+

 0 0 e−iωt

0 0 0

eiωt 0 0

(5
1

∆2

+
1

∆1

)
. (B.59)

This does not match the Hamiltonian I wrote down for my simulations and also does
not match the Hamiltonian matching mine that Caspar Groiseau derived for me. This
method only took account of the linear interactions. And, I must point out that when the
detunings match, the cos term is multiplied by a factor of 0.
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Wigner-Eckhart Theorem

The Wigner-Eckhart Theorem shows that when operating to modify the angular mo-
mentum of a state, the transition between any two specific states is proportional to the
Clebsch-Gordon coefficients, which are symmetric, and have no dependence upon magnetic
substates.

Group Theory

The state of a valence electron is in the group SO(3,C) ⊗ SU(2,C), representing the
three magnetic sublevels, ` = 2,m = −0,±1, and the two spin states of the electron, s =

±1
2
. The group SO(3,R) is the Euclidean rotation group, which is not simply connected,

however, the Hilbert space is a complex space, and, fortunately, SO(3,C), which represents
a Lie group, is simply connected. The irreducible dimension of the above tensor product
is 4 ⊗ 2, which is not what is achieved in classical spherical tensor operations. Complex
position space might be representable as the three directions plus the potential of the
electromagnetic field and the spin space is represented by two orientations. There appears
to be no symmetry-breaking possible in the complex position space. The group is Abelian,
and to make a transition from one state to another via an intermediary that is unbalanced
would require a different operation for the reverse transition, but an Abelian group is
commutative.

The two spin states have different energy levels in a magnetic field because of the
difference between paramagnetic and diamagnetic alignment. This can lead to symmetry
breaking and could explain the mechanism behind uneven energy shifts in a Raman optical
transition in the presence of a medium strength magnetic field.



Postscript

If consciousness is quantum mechanical, and if dharma can exist as solitons, then the
memory of Princess Diana lives on.
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